全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2008 

湖南香花岭锡多金属矿床C、O、Sr同位素地球化学

, PP. 1522-1530

Keywords: 方解石,C、O、Sr同位素,成矿流体,香花岭锡多金属矿床

Full-Text   Cite this paper   Add to My Lib

Abstract:

对湖南香花岭锡多金属矿床成矿早、晚两期方解石进行了系统的C、O、Sr同位素研究。结果表明,成矿早期方解石具有相对较低的δ13CPDB(-5.4‰~-1.4‰)、δ18OSMOW(+6.1‰~+13.9‰)和较高的87Sr/86Sr值(0.7101~0.7230);而成矿晚期方解石则具有相对较高的δ13CPDB(+0.2‰~+0.6‰)、δ18OSMOW(+19.4‰~+21.5‰)和较低的87Sr/86Sr值(0.7101)。成矿早期方解石为岩浆热液与海相碳酸盐岩相互作用的产物,成矿流体中的碳源于岩浆碳和海相碳酸盐岩;模拟计算结果显示,成矿早期方解石为成矿溶液发生0.05-0.1摩尔分数的CO2去气作用的产物。而成矿晚期方解石主要为矿区碳酸盐岩围岩低温淋滤的产物,流体中的碳主要源于矿区碳酸盐岩围岩。成矿流体中Sr源于矿区花岗岩和碳酸盐岩,从成矿早期到晚期,岩浆来源的Sr逐渐减少,而碳酸盐岩围岩提供的Sr比例不断增大。

References

[1]  蔡宏渊.香花岭锡多金属矿田成矿地质条件及矿床成因探讨[J].矿产与地质,1991,5(4):272-283.
[2]  高国秋 易诗军 杨楚雄 丁传谱.湘南香花岭地区泥盆系白云岩的成因[J].地球化学,1988,3:216-223.
[3]  胡永嘉 韩雄刚 郑瑞凡 等.湘南以铅锌为主多金属成矿规律及预测专题研究报告[R].长沙:湖南省地质研究所,1982.
[4]  黄蕴慧 杜绍华 等.香花岭岩石矿床与矿物[M].北京:北京科学技术出版社,1988.97-102.
[5]  毛景文 王志良 李厚民 王成玉 陈毓川.云南鲁甸地区二叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示[J].地质论评,:.
[6]  毛景文 李厚民 王义天 等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J].地质学报,2005,79(6):839~857.
[7]  莫柱荪 叶伯丹.南岭花岗岩地质学[M].北京:地质出版社,1980.
[8]  彭建堂 胡瑞忠 等.湘中锡矿山锑矿床的Sr同位素地球化学[J].地球化学,:.
[9]  彭建堂 胡瑞忠.湘中锡矿山超大型锑矿床的碳、氧同位素体系[J].地质论评,:.
[10]  沈能平 彭建堂 袁顺达 张东亮 符亚洲 胡瑞忠.湖北徐家山锑矿床方解石C、O、Sr同位素地球化学[J].地球化学,2007,36(5):479-485.
[11]  双燕.[D].中国科学院地球化学研究所,2007.
[12]  王立华 张德全.湖南香花岭锡矿床地质特征及成矿机理[M].北京科技出版社,1988.
[13]  王幼明 段嘉瑞.香花岭岩浆底辟伸展构造及其控矿的研究[J].矿产与地质,:.
[14]  乌家达 周代海.香花岭多金属矿田锡矿源层及成矿作用[J].矿产与地质,1988,2(1):58-61.
[15]  肖荣阁 大井隆夫 野春雅夫 木JiI田喜一.湘南高温热液矿床中硼同位素组成及分馏作用研究[J].华南矿产与地质,2001,2:1-7.
[16]  徐启东 章锦统.湖南香花岭锡多金属矿田成矿地质背景与找矿潜力评估[J].地球科学,1993,18(5):602-611.
[17]  袁顺达 彭建堂 胡瑞忠 漆亮 沈能平 张东亮.湖南香花岭锡多金属矿床方解石稀土元素地球化学[J].矿物岩石地球化学通报,2006,25(增刊):174-177.
[18]  张德全 王立华.香花岭矿田矿床成矿分带及其成因探讨[J].矿床地质,1988,7(4):33-41.
[19]  郑永飞 陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.316.
[20]  Chen F, Hegner E, Todt W. 2000. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic are. Int J Earth Sci. , 88(4): 791-802.
[21]  刘家齐 常海亮.南岭地区某些燕山期花岗岩及其脉钨矿床的温压地球化学研究[A].宜昌地质矿产研究所.南岭地质矿产科研报告集(C)[C].武汉:武汉地质学院出版社,1987.145-196.
[22]  毛景文 赫英 等.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质,:.
[23]  邱瑞照 邓晋福 蔡志勇 周肃 常海亮 杜绍华.湖南香花岭矿田花岗岩成岩成矿物质来源[J].矿床地质,2002,21(增刊):1017-1020.
[24]  邱瑞照 邓晋福 蔡志勇 周肃 常海亮 杜绍华.湖南香花岭430花岗岩体Nd同位素特征及岩石成因[J].岩石矿物学杂志,2003,22(1):41-46.
[25]  邱瑞照 周肃 常海亮 杜绍华 彭松柏.超临界流体在花岗岩成岩成矿过程中的作用――以香花岭花岗岩型铌钽矿床(430)为例[J].地质科技情报,1998,17(增刊):40-44.
[26]  邱瑞照 彭松柏 杜绍华.香花岭花岗岩型铌钽矿床的成因――兼论超临界流体在成岩成矿过程中的作用[J].湖南地质,1997,16(2):92-97.
[27]  Chen F, Siebel W, Satir M, Terzioglu M N, Saka K. 2002. Geochronology of the Karaderc basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int. J. Earth Sci. , 91(3) : 469-481.
[28]  Dem6ny A, Harangi SZ. 1996. Stable isotope studies on carbonate formations in alkaline basalt and lamprophyre series: evolution of magmatic fluids and magma-sediment interactions. Lithos, 37: 335-349.
[29]  Du Shaohua, Huang Yunhui. 1985. Hsianghualingite A new type of magmatie rock. Science in China (Series B), 28(5) : 537-548.
[30]  Heeht Lutz, Freiberger Regina, Gilg H. Albert, Grundmann Giinter, Kostitsyn Yuri A. 1999. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Gopfersgriin (Fichtelgebirge, Germany). Chemical Geology, 155(1-2): 115-130.
[31]  Hoefs J. 1973. stable isotope geochemistry. Berlin Heidelberg: Springer-Verlag, 1 - 140.
[32]  Huang Z L, Li W B, Chen J, Han R S, Liu C Q, Xu C, Guan T. 2003. Carbon and oxygen isotope constraints on mantle fluid involvement in the mineralization of the Huize super-large Pb- Zn deposits, Yunnan Province, China. Journal of Geochemical Exploration, 78-79: 637-642.
[33]  Li Wenbo, Huang Zhilong, Yin Mudan. 2007. Isotope geochemistry of the Huize Zn-Pb ore field, Yunnan Province, Southwestern China: Implication for the sources of ore fluid and metals. Geochemical Journal, 41(1) : 65-81.
[34]  Mao Jingwen, Wang Yitian, Li Houmin, Franco Pirajno, Zhang Changqing, Wang Ruiting. 2008. The relationship of mantlederived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics. Ore Geology Reviews, 33: 361-381.
[35]  McCrea J M. 1950. The isotopic chemistry of carbonates and a paleo-temperature scale. Journal of Chemistry and Physics, 18: 849-857.
[36]  Ohmoto H. 1979. Isotopes of sulfur and carbon. In. Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits (2nd edition), John Wiley and Sons, 509-567.
[37]  Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67: 551-578.
[38]  O\\'Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51:5547-5558.
[39]  Qi L, H u J,Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51: 507- 513.
[40]  Spangenberg J, Fontbote L, Sharp Z D, Hunziker J. 1996. Carbon and oxygen isotope study of hydrothermal carbonates in the zinc-lead deposits of the San Vicente district, central Peru: a quantitative modeling on mixing processes and CO2 degassing. Chemical Geology, 133:289-315.
[41]  Truesdell A H. 1974. Oxygen isotope actives and concentrations in aqueous salt solutions at elevated temperatures--Consequence for isotope geochemistry. Earth Planet. Sci. Lett. , 23:387 396.
[42]  Veizer J. 1989. Strontium isotopes in seawater through time. Ann. Rev. Planet. Sci. , 17 : 141-167.
[43]  Xiong X L, Rao B, Chen F R, Zhu J C, Zhao Z H. 2002. Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualing Pluton, South China, at 150 MPa and H2O-saturated conditions. J. Asia Earth Sci. , 21 : 175 -188.
[44]  Yuan Shunda, Peng Jiantang, Shen Nengping, Hu Ruizhong, Dai Tongmo. 2007. ^40 Ar-^39 Ar isotopic dating of the Xianghnaling, Hunan, Sn-polymetallic orefield and its geological implications. Acta Geologica Sinica (English Edition), 81(2): 278-286.
[45]  Yuan Shunda, Peng Jiantang, Hu Ruizhong, Li Huiming, Shen Nengping, Zhang Dongliang. 2008. A precise U-Pb age of cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43 (4): 375 382.
[46]  Zheng Y F. 1990. Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2: A quantitave evalution and application to Kushikino gold mining area in Japan. Mineralium Deposita, 25:246-250.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133