全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2008 

吸附势理论在煤层气吸附/解吸中的应用

, PP. 1382-1389

Keywords: 吸附势理论,甲烷碳同位素,多组分气体,吸附解吸,分馏效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

煤层气的吸附/解吸将导致煤层甲烷碳同位素以及煤层气多组分分馏,使得煤层气富集区预测成为可能;并为揭示注入CO??2?增强CH??4?产出提供依据。本文根据Polanyi吸附势理论和实测及收集的等温吸附试验数据,探讨煤层甲烷碳同位素和多组分气体的分馏。通过研究,得到如下两个结论:①??13?CH??4?在煤表面的吸附势普遍高于??12?CH??4?,也就是说??13?CH??4?与??12?CH??4?相比具有优先吸附、滞后解吸的特点。这种差异具有随压力增加而增加的特点。②煤层气吸附/解吸过程中CH??4?和CO??2?的分馏可归纳为以下3种情形:a.CO??2?和CH??4?的吸附/解吸等温线不相交,CO??2?的吸附势大于等于CH??4?,在CO??2?和CH??4?吸附势接近的中压阶段(1~2.5MPa)不利于注CO??2?驱CH??4?,高压、低压阶段均有利;b.因CH??4?的吸附/解吸等温线相交造成CH??4?和CO??2?的吸附特性曲线相交,在高压条件(>2.5MPa)下利于注CO??2?驱CH??4?;c.因CO??2?的吸附/解吸等温线相交造成CH??4?和CO??2?的吸附特性曲线相交,在高压条件(>2.5MPa)下利于注CO??2?驱CH??4?。吸附势理论的引入为定量评价注入二氧化碳驱甲烷工艺参数和有利储层的选择提供了方法,并揭示了在高压条件(>2.5MPa)下总是有利于向煤层注入CO??2?强化CH??4?产出。

References

[1]  崔永君 李育辉 张群 等.煤吸附甲烷的特征曲线及其在煤层气储集研究中的作用[J].科技通报,2005,50(1):76-81.
[2]  高德霖 张琪 孙小玉.气相吸附平衡的推算--吸附势理论和微孔吸附容积充填理论[J].精细化工原料及中间体,2003(11):2-8.
[3]  顾惕人 朱陟瑶.表面化学[M].北京:科学出版社,2001.283.
[4]  苏现波 陈江峰 等.煤层气地质学与勘探开发[M].北京:科学出版社,2001.
[5]  Jack C, Pashin R E, Carroll R H. 2001. Geologic screening criteria for sequestration of CO2 in coal: quantifying potential of the Black Warrior coalbed methane fairway, Alabama. Geological Survey of Alabama, 110 - 119.
[6]  Joubert J L, Grein T, Bienstock D. 1974. Effect of moisture on the methane capacity of American coals. Fuel, 53: 186-191.
[7]  King J G, Wilkins E T. 1944. The internal structure of coal. Proc. Conf. Ultrafine Structure of Coals and Cokes. British Coal Utilisation Res. Assoc. , London, 46-56.
[8]  Laxminarayana L, Crosdale P J. 1999. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology, 40: 309-325.
[9]  Mukhopadhyay P K, Macdonald D J. 1997. Relationship between methane/ generation/ adsorption potential, micropore system, and permeability with composition and maturityexamples from the Carboniferous coals of Nova Scotia, Eastern Canada. In: Proceeding of the 1997 CoMbed Methane Symposium, Tuscaloosa, 183-193.
[10]  Ozawa S, Kusurni S, Ogino Y J. 1976. Physical adsorption of gases at high pressures (1V): An improvement of the DubininAstakhov adsorption equation. Colloid & Interface Science, 56 83-91.
[11]  Reeves S. 2002. Field studies of enhanced methane recovery and CO2 sequestration in coal seams. World Oil, 223: 56-60.
[12]  Stevens, S H, Schoeling L, Pekot L. 1999. COz injection for enhanced coalbed methane recovery: Project screening and design. International Coalbed Methane Symposium Proceedings, Tuscaloosa, A1. , 309-317
[13]  Strapoc D, Schimmelmann A, Mastalerz M. 2006. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal. Organic Geochemistry, 37: 152-164.
[14]  Su X, Lin X, Liu S, et al. 2005. Geology of coalbed methane reservoirs in the southeast Qinshui Basin of China. International Journal of Coal Geology, 62: 197-210.
[15]  Su X, Lin X, Zhao M, et al. 2006. Prediction on coal adsorption capacity under reservoir condition. Natural Gas Industry,26-34
[16]  苏现波 张丽萍 林晓英.煤阶对煤的吸附能力的影响[J].天然气工业,2005,25(1):19-21.
[17]  吴建光 叶建平 唐书恒.注入CO2提高煤层气产能的可行性研究[J].高校地质学报,2004,10(3):463-467.
[18]  杨宜春.关于煤层气组分和甲烷碳同位素的几个问题[J].贵州地质,1992,9(1):99-108.
[19]  张力 邢平伟.煤体瓦斯吸附和解吸特性的研究[J].江苏煤炭,2000(4):18-20.
[20]  张建博 陶明信.煤层甲烷同位素在煤层气勘探中的地质意义―以沁水盆地为例[J].沉积学报,:.
[21]  张晓东 桑树勋 秦勇 张井 唐家祥.不同粒度的煤样等温吸附研究[J].中国矿业大学学报,2005,34(4):427-432.
[22]  钟玲文 张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,:.
[23]  钟玲文.煤的吸附性能及影响因素[J].地球科学:中国地质大学学报,2004,29(3):327―332.
[24]  周荣福 叶建平.我国煤储层等温吸附常数分布规律及其意义[J].煤田地质与勘探,:.
[25]  Beamish B B, Crosdale P J. 1998. Instantaneous outbursts in underground coal mines: An overview and association with coal type. International Journal of Coal Geology, 35: 27-55.
[26]  Busch A, Gensterblum Y, Krooss B M. 2003a. Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixture. International Journal of Coal Geology, 55: 205-224.
[27]  Busch A, Gensterblum Y, Krooss B M. 2003b. High pressure the rnodynamic and kinetic gas sorption experiments with single and mixed gases on coals: the PECOPOL project. 2nd International Workshop on Research Relevant to CO2 Sequestration in Coals Seam 25th September 2003, Tokyo, Japan.
[28]  Clarkson C R, Bustin R M. 2000. Binary gas adsorption/desorption isotherms~ effect of moisture and coal composition upon carbon dioxide selectivity over methane. International Journal of Coal Geology, 42:241-272.
[29]  Cui X, Bustin M C, Dipple G. 2004. Selective transport of CO2, CH4 and N2 in coal: Insights from modeling of experimental gas adsorption data. Fuel, 83: 293-303.
[30]  Crosdale P J, Beamish B B, Valix M. 1998. Coalbed methane sorption related to coal composition. International Journal of Coal Geology, 35:147-158.
[31]  Dubinin M M. 1960. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev., 60: 235-241.
[32]  Ettinger I, Eremin I, Zimakov B, Yanvoskaya M. 1966. Natural factors influencing coal sorption properties. I. Petrography and sorption properties of coals. Fuel 45, 267-275.
[33]  Gamson P K, Beamish B B. 1992. Coal type, microstructure and gas flow behavior of Bowen Basin coals. In: Beamish B B, Gamson P K, eds. Symposium on Coalbed Methane Research and Development in Australia. James Cook Univ. of No. Queensland. 4, 43-66.
[34]  Gray I. 1992. Reservoir engineering in coal seams. Part I-The physical process of gas storage and movement in coal seams. SPE, no. 35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133