全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Isotope Shifts in High Lying Levels of Dy I and Er I by High-Resolution UV Laser Spectroscopy

DOI: 10.1155/2011/578374

Full-Text   Cite this paper   Add to My Lib

Abstract:

High-resolution atomic-beam ultraviolet (UV) laser spectroscopy in Dy I and Er I has been performed. Isotope shifts have been measured for two transitions in Dy I and one transition in Er I. Specific mass shifts and field shifts have been derived for the studied transitions, and large differences between the two – transitions in Dy I have been found. From the derived specific mass shifts and field shifts, configuration mixing at the upper levels of transitions has been discussed. 1. Introduction High-resolution laser spectroscopy continues to play an important role in obtaining atomic spectroscopic data such as isotope shift (IS). The IS contains fundamental atomic properties such as electronic configuration and wave function. Recently, theoretical calculations of IS have been reported by different groups using various methods for light elements of Li, Na, and Mg [1–3]. Dysprosium and erbium, two typical rare-earth elements, have the , , , open shells, which yield complicated atomic structures. Such a kind of complex heavy atoms provides a challenge to theoretical atomic calculations of many-electron atoms [4]. Moreover, Dy and Er are prime candidates for the study of ultracold dipolar physics [5, 6]. On the other hand, measurements of IS yield the mass dependence of nuclear charge radii, a key information for the study of unstable nuclei [7, 8]. Study of IS is, therefore, of much interest not only from the point of view of atomic physics but also from the point of view of nuclear physics. Many studies of IS have been reported for Dy I and Er I in the visible and near-infrared regions by laser spectroscopy [5, 9–16]. For the ultraviolet (UV) region, corresponding to high lying levels at energy about 25000?cm?1, only several measurements have been reported. ISs in high lying levels of Dy I have been measured by using a Fabry-Perot spectrometer [17] and those of Er I by Doppler-reduced saturation absorption spectroscopy [18]. Strong configuration mixing is considered in such high lying levels and may yield different ISs. In our previous papers [19–21], we reported high-resolution atomic-beam UV laser spectroscopy in Gd I and Er I around 395?nm by frequency doubling of a diode laser beam. The present work is to extend previous measurements to the wavelength region of about 402?nm in Dy I and Er I. In this paper, ISs are measured for two UV transitions in Dy I and one transition in Er I. From ISs, field shifts and specific mass shifts are obtained, and results are discussed. 2. Experiment The present experiment was performed using an atomic beam and a UV

References

[1]  Z.-C. Yan, W. N?rtersh?user, and G. W. F. Drake, “High precision atomic theory for Li and Be+: QED shifts and isotope shifts,” Physical Review Letters, vol. 100, no. 24, Article ID 243002, 2008.
[2]  J. C. Berengut, V. V. Flambaum, and M. G. Kozlov, “Calculation of relativistic and isotope shifts in Mg I,” Physical Review A, vol. 72, no. 4, Article ID 044501, 4 pages, 2005.
[3]  M. S. Safronova and W. R. Johnson, “Third-order isotope-shift constants for alkali-metal atoms and ions,” Physical Review A, vol. 64, no. 5, Article ID 052501, 12 pages, 2001.
[4]  V. A. Dzuba and V. V. Flambaum, “Theoretical study of some experimentally relevant states of dysprosium,” Physical Review A, vol. 81, no. 5, Article ID 052515, 2010.
[5]  M. Lu, S. H. Youn, and B. L. Lev, “Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium,” Physical Review A, vol. 83, no. 1, Article ID 012510, 2011.
[6]  A. J. Berglund, J. L. Hanssen, and J. J. McClelland, “Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms,” Physical Review Letters, vol. 100, no. 11, Article ID 113002, 2008.
[7]  H. J. Kluge and W. N?rtersh?user, “Lasers for nuclear physics,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 58, no. 6, pp. 1031–1045, 2003.
[8]  W. N?rtersh?user, R. Sánchez, G. Ewald et al., “Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination,” Physical Review A, vol. 83, no. 1, Article ID 012516, 2011.
[9]  N. Leefer, A. Cing?z, and D. Budker, “Measurement of hyperfine structure and isotope shifts in the Dy 421 nm transition,” Optics Letters, vol. 34, no. 17, pp. 2548–2550, 2009.
[10]  W. G. Jin, T. Wakui, T. Endo, H. Uematsu, T. Minowa, and H. Katsuragawa, “Specific mass shift in Gd I and Dy I,” Journal of the Physical Society of Japan, vol. 70, no. 8, pp. 2316–2320, 2001.
[11]  R. J. Lipert and S. C. Lee, “Isotope shifts and hyperfine structure of erbium, dysprosium, and gadolinium by atomic-beam diode-laser spectroscopy,” Applied Physics B Photophysics and Laser Chemistry, vol. 57, no. 6, pp. 373–379, 1993.
[12]  H. D. Kronfeldt, D. Ashkenasi, and H. M. Nikseresht, “Crossed-second-order effects in the isotope shift for170-166Er and168-166Er in the configuration 4f126s2,” Zeitschrift für Physik D, vol. 22, no. 3, pp. 569–575, 1992.
[13]  W. G. Jin, T. Horiguchi, M. Wakasugi, and Y. Yoshizawa, “Hyperfine structure and isotope shift in Er I by the atomic-beam laser spectroscopy,” Journal of the Physical Society of Japan, vol. 59, no. 9, pp. 3148–3154, 1990.
[14]  M. Wakasugi, T. Horiguchi, W. G. Jin, H. Sakata, and Y. Yoshizawa, “Changes of the nuclear charge distribution of Nd, Sm, Gd and Dy from optical Isotope shifts,” Journal of the Physical Society of Japan, vol. 59, no. 8, pp. 2700–2713, 1990.
[15]  A. Bernard, H. Brüggemeyer, and V. Pfeufer, “Changes in mean-square nuclear charge radii in Er from optical isotope shifts by laser-atomic-beam spectroscopy,” Zeitschrift für Physik A, vol. 322, no. 1, pp. 1–11, 1985.
[16]  V. Pfeufer, W. J. Childs, and L. S. Goodman, “J dependence of the isotope shift in the ground term of dysprosium I,” Journal of the Optical Society of America B, vol. 1, no. 1, pp. 34–37, 1984.
[17]  S. M. Afzal and S. A. Ahmad, “Isotope shift studies in the spectral lines of Dy I in the UV region: new assignments to 4f95d6s6p configuration,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 55, no. 1, pp. 97–102, 2000.
[18]  D. Ashkenasi, S. Kr?ger, and H. D. Kronfeldt, “Finestructure, hyperfine structure and isotope shift of 4f126s7s in Er I,” European Physical Journal D, vol. 11, no. 2, pp. 197–205, 2000.
[19]  W. G. Jin, Y. Nemoto, and T. Minowa, “J Dependence of isotope shifts at high-lying levels of Gd i,” Journal of the Physical Society of Japan, vol. 78, no. 5, Article ID 055001, 2009.
[20]  W. G. Jin, H. Nakai, M. Kawamura, and T. Minowa, “High-resolution ultraviolet laser spectroscopy in atomic erbium,” Journal of the Physical Society of Japan, vol. 78, no. 1, Article ID 015001, 2009.
[21]  W. G. Jin, Y. Nemoto, H. Nakai, M. Kawamura, and T. Minowa, “Isotope shifts in Gd I and Er I by UV laser spectroscopy,” Journal of the Physical Society of Japan, vol. 77, no. 12, Article ID 124301, 2008.
[22]  W. F. Meggers, C. H. Corliss, and B. F. Scribner, Tables of Spectral-Line Intensities, Part I – Arranged by Elements, NBS Monograph 145, US GPO, Washington, DC, USA, 1975.
[23]  W. C. Martin, R. Zalubas, and L. Hagan, Atomic Energy Levels: The Rare-Earth Elements, NSRDS - NBS60, US GPO, Washington, DC, USA, 1978.
[24]  J. J. McClelland, “Natural linewidth of the 401-nm laser-cooling transition in Er I,” Physical Review A, vol. 73, no. 6, Article ID 064502, 2006.
[25]  K. Heilig and A. Steudel, “Changes in mean square nuclear charge radii from optical isotope shifts,” Atomic Data and Nuclear Data Tables, vol. 14, no. 5-6, pp. 613–638, 1974.
[26]  P. Aufmuth, K. Heilig, and A. Steudel, “Changes in mean-square nuclear charge radii from optical isotope shifts,” Atomic Data and Nuclear Data Tables, vol. 37, no. 3, pp. 455–490, 1987.
[27]  W. H. King, Isotope Shifts in Atomic Spectra, Plenum, New York, NY, USA, 1984.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133