全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2009 

西藏驱龙超大型斑岩铜矿的成因:流体包裹体及HO同位素证据

, PP. 1838-1859

Keywords: 流体包裹体,HO同位素,矿床成因,驱龙斑岩铜矿,冈底斯,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

与多数产于岩浆弧环境中的斑岩铜矿不同,西藏冈底斯带斑岩铜矿形成于碰撞造山环境,查明其形成过程有助于理解非岩浆弧环境中斑岩铜矿床的成因。为此,选择冈底斯带最大的斑岩铜矿――驱龙斑岩铜矿进行解剖,通过对矿床岩浆热液过程形成的各类脉体详细的流体包裹体研究,以及不同蚀变阶段蚀变矿物的HO同位素研究发现:引起矿床早期蚀变(钾硅酸盐化)与矿化的流体并非通常认为的高盐度岩浆热液,而是直接从岩浆房出溶的中等盐度(约9%NaCl)、近临界密度的高温(550~650℃)气相;气相近临界密度的特征表明,早期蚀变与矿化形成于较高的压力(105±15~90±20MPa)条件下,用静岩压力估算,对应的古深度在4.2±0.6~3.6±0.8km之间,成矿后(约16Ma)矿区发生了至少3~3.5km的剥蚀;与高盐度流体相比,中等盐度气相与熔体密度差较大,很难在斑岩体顶部聚集并集中释放,而连续释放则直接导致矿床含矿斑岩体与Cu、Mo矿体时空关系的解耦,并造就了矿床早期蚀变范围大、但强度弱,矿化范围大、但品位低的矿床地质特征;成矿物质的沉淀并非温度降低的结果,而是因压力降低及气相中S大量减少所致。总之,驱龙斑岩铜矿是一类成矿与低密度气相有关的斑岩铜矿类型,其蚀变矿化特征及成矿过程与高盐度流体引发的斑岩矿床类型有所不同,意识到斑岩矿床蚀变及矿化特征与矿床成因的密切关系,对矿床勘查将具有重要的现实意义。

References

[1]  侯增谦.曲晓明.王淑贤.高永丰.杜安道.黄卫 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用 [J].-中国科学D辑2003(7)
[2]  侯增谦.高永丰.孟祥金.曲晓明.黄卫 西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制 [J].-岩石学报2004(2)
[3]  侯增谦.孟祥金.曲晓明.高永丰 西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束 [J].-矿床地质2005(2)
[4]  孟祥金.侯增谦.高永丰.黄卫.曲晓明.屈文俊 西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义 [J].-地质论评2003(6)
[5]  杨志明,西藏驱龙超大型斑岩铜矿床--岩浆作用及矿床成因,北京:中国地质科学院,2008.
[6]  杨志明.侯增谦.宋玉财.李振清.夏代详.潘凤雏 西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿 [J].-矿床地质2008(3)
[7]  杨志明.侯增谦.夏代详.宋玉财.李政 西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示 [J].-矿床地质2008(1)
[8]  杨志明.侯增谦.李振清.宋玉财.谢玉玲 西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录 [J].-矿床地质2008(2)
[9]  Cline J S,Bodnar R J,Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?,Journal of Geophysical Research B:Solid Earth and Planets,1991(B5).
[10]  Cline J S,Bodnar R J,Direct evolution of brine from a crystallizing silicic melt at the Questa,New Mexico,molybdenum deposit,Economic Geology,1994(8).
[11]  Coleman M,Hodges K,Evidence for Tibetan plateau uplift before 14 Ma ago from a new minimum age for east-west extension,Nature,1995.
[12]  Copeland P,Harrison T M,Kidd W S F,Xu R H Zhang Y Q,Rapid early Miocene acceleration of uplift in the Gangdese Belt,Xizang(southern Tibet),and its bearing on accomodation mechanisms of the India-Asia collision,Earth and Planetary Science Letters,1987(2-4).
[13]  Coulon C,Maluski H,Bollinger C,Wang S,Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:~(39)Ar/~(40)Ar dating,petrological characteristics and geodynamic significance,Earth and Planetary Science Letters,1986.
[14]  Dilles J H,Einaudi M T,Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit,Nevada:a 6-km vertical reconstruction,Economic Geology,1992(8).
[15]  Driesner T,Heinrich C A,The system H_2O-NaCl.Part I:correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000℃,0 to 5000 bar,and 0 to 1 X_(NaCl),Geochimica et Cosmochimica Acta,2007.
[16]  Faure K,δD values of fluid inclusions water in quartz and calcite ejecta from active geothermal systems:do values reflect those of original hydrothermal water?,Economic Geology,2003.
[17]  Faure K,Matsuhisa Y,Metsugi H,Mizota C Hayashi S,The Hishikari Au-Ag epithermal deposit,Japan:oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids,Economic Geology,2002.
[18]  Gao Y F,Hou Z Q,Kamber B S,Wei R H Meng X J Zhao R S,Adakite-like porphyries from the southern Tibetan continental collision zones:evidence for slab melt metasomatism,Contribution to Mineral Petrology,2007.
[19]  Graham C M,Sheppard S M F,Experimental hydrogen isotope studies,Ⅱ.Fractionations in the systems epidote-NaCl-H_2O,epidote-CaCl_2-H_2O and epidote-seawater,and the hydrogen isotope composition of Natural epidotes,Earth and Planetary Science Letters,1980.
[20]  Gustafson L B,Hunt J P,The porphyry copper deposit at El Salvador,Chile,Economic Geology,1975(5).
[21]  Harrison T M,Copeland P,Kidd W S F,Yin A,Raising Tibet,Science,1992.
[22]  Hedenquist J W,Lowenstern J B,The role of magmas in the formation of hydrothermal of deposits,Nature,1994.
[23]  Hedenquist J W,Arribas A,Reynolds T J,Evolution of an intrusion-centered hydrothermal system;Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits,Philippines,Economic Geology,1998(4).
[24]  Heinrich C A,The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study,Mineralium Deposita,2005(8).
[25]  Rusk B G,Reed M H,Dilles J H,Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte,Montana,Economic Geology,2008(2).
[26]  Seedorf E,Dilles J H,Proffett J M Jr,Einaudi M R,Zurcher L,Stavast W J A,Johnson D A,Barto M D,Porphyry copper deposits:characteristics and origin of hypogene features,2005.
[27]  Sillitoe R H,A plate tectonic model for the origin of porphyry copper deposits,Economic Geology,1972.
[28]  侯增谦.曲晓明.黄卫.高永丰 冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带 [J].-中国地质2001(10)
[29]  侯增谦.莫宣学.高永丰.曲晓明.孟祥金 埃达克岩:斑岩铜矿的一种可能的重要含矿母岩――以西藏和智利斑岩铜矿为例 [J].-矿床地质2003(1)
[30]  孟祥金.侯增谦.李振清 西藏冈底斯三处斑岩铜矿床流体包裹体及成矿作用研究 [J].-矿床地质2005(4)
[31]  孟祥金.侯增谦.李振清 西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示 [J].-地质学报2006(4)
[32]  曲晓明.侯增谦.黄卫 冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带? [J].-矿床地质2001(4)
[33]  曲晓明.侯增谦.国连杰.徐文艺 冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O同位素约束 [J].-地质学报2004(6)
[34]  芮宗瑶.侯增谦.曲晓明.张立生.王龙生.刘玉琳 冈底斯斑岩铜矿成矿时代及青藏高原隆升 [J].-矿床地质2003(3)
[35]  芮宗瑶.李光明.张立生.王龙生 西藏斑岩铜矿对重大地质事件的响应 [J].-地学前缘2004(1)
[36]  杨志明.谢玉玲.李光明.徐九华 西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化 [J].-地质与勘探2005(2)
[37]  杨志明.谢玉玲.李光明.徐九华.王葆华 西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究 [J].-矿床地质2005(6)
[38]  杨志明.谢玉玲.李光明.徐九华 西藏冈底斯斑岩铜矿带成矿流体的扫描电镜(能谱)约束--以驱龙和厅宫矿床为例 [J].-矿床地质2006(2)
[39]  阴家润.蔡华伟.周志广.张翼翼.段翔.谢尧武 西藏海相三叠系-侏罗系界线及晚三叠世生物绝灭事件研究 [J].-地学前缘2006(4)
[40]  翟裕生 论成矿系统 [J].-地学前缘1999(1)
[41]  郑淑蕙,张知非,倪葆龄,侯发高,沈敏子,西藏地热水的氢氧稳定同位素研究,北京大学学报(自然科学版),1982.
[42]  Becker S P,Fall A,Bodnar R J,Synthetic fluid inclusions:XVII.PVTX properties of high salinity H_2O-NaCl solutions (》 30 wt% NaCl):application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits,Economic Geology,2008(3).
[43]  Bischoff J L,Densities of liquids and vapors in boiling NaCl-H_2O solutions:A PVTX summary from 300℃ to 500℃,American Journal of Science,1991.
[44]  Blisniuk P M,Hacker B,Glodny J,Normal faulting in central Tibet since at least 13.5 Myr ago,Nature,2001.
[45]  Bodnar R J,Synthetic fluid inclusions:XII.The system H_2O-NaCl.Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution,Geochimica et Cosmochimica Acta,1994.
[46]  Bodnar R J,Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits,Mineralogical Association of Canada Short Course Series,1995.
[47]  Bodnar R J,Burnham C W,Sterner S M,Synthetic fluid inclusions in natural quartz.Ⅲ.Determination of phase equilibrium properties in the system H_2O-NaCl to 1000℃ and 1500 bars,Geochimica et Cosmochimica Acta,1985(9).
[48]  Burnham C W,Magmas and hydrothermal fluids,New York:wiley,1979.
[49]  Burnham C W,Magmas and hydrothermal fluids,New York:John Wiley and Sons,Inc,1997.
[50]  Camus F,Dilles J H,A special issue devoted to porphyry copper deposits of northern Chile,Economic Geology,2001.
[51]  Candela P A,A review of shallow,ore-related granites:textures,volatiles and ore metals,Journal of Petrolgoy,1997.
[52]  Clayton R N,Mayeda T K,The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis,Geochimica et Cosmochimica Acta,1963.
[53]  Hedenquist J W,Richards J P,The influence of geochemical techniques on the development of genetic models for porphyry copper deposits.Techniques in hydrothermal ore deposits geology,Reviews in Economic Geology,1998.
[54]  Heithersay P S,Walshe J L,Endeavour 26 North:A porphyry copper-gold deposit in the Late Ordovician shoshonitic Goonumbla volcanic complex,New South Wales,Australia,Economic Geology,1995.
[55]  Hemley J J,Hunt J P,Hydrothermal ore-forming processes in the light of studies in rock-buffered systems:Ⅱ,some general geologic applications,Economic Geology,1992(1).
[56]  Hezarkhani A,Williams-Jones A E,Gammons C H,Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit,Iran,Mineralium Deposita,1999(8).
[57]  Hou Z Q,Gao Y F,Qu X M,Rui Z Y,Mo X X,Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet,Earth and Planetary Science Letters,2004.
[58]  Hou Z Q,Yang Z M,Qu X M,Meng X J Li Z Q Beaudoin G Rui Z Y Gao Y F,The Miocene gangdese porphyry Cu belt:Generated during post-collisional extension in the Tibetan orogen,Ore Geology Reviews,2009.
[59]  Landtwing M R,Pettke T,Halter W E,Heinrich C A Redmond P B Einaudi M T Kunze K,Copper deposition during quartz dissolution by cooling magmatic hydrothermal fluids:the Bingham porphyry,Earth and Planetary Science Letters,2005(1-2).
[60]  Lowell J D,Guilbert J M,Lateral and vertical alteration-mineralization zoning in porphyry ore deposits,Economic Geology,1970(4).
[61]  Matsuhisa Y,Goldsmith J R,Clayton R N,Oxygen isotope fractionation in the system quartz-albite-anorthite-water,Geochimica et Cosmochimica Acta,1979.
[62]  Miller C,Schuster R,Klotzli U,Frank W,Purtscher F,Post-collisional potassic and ultrapotassic magmatism in SW Tibet:geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis,Journal of Petrology,1999.
[63]  Mitchell A H G,Metallogenic belts and angle of dip of Benioff zones,Nature,1973.
[64]  Nagaseki H,Hayashi K,Experimental study of the behavior of copper and zinc in a boiling hydrothermal system,Geology,2008(1).
[65]  Pokrovski G S,Yu Borisova A,Harrichoury J C,The effect of sulfur on vapor-liquid partitioning of metals in hydrothermal systems:an experimental batch-reactor study,Geochimica et Cosmochimica Acta,2006(18S).
[66]  Potter R W,Clynne M A,Brown D L,Freezing point depression of hydrothermal sediments from the Atlantis Ⅱ Deep,Red Sea,Economic Geology,1978.
[67]  Proffett J M,Geology of the Bajo de la Alumbrera porphyry copper-gold deposit,Argentina,Economic Geology,2003(8).
[68]  Proffett J M,High Cu grades in porphyry Cu deposits and their relationship to emplacement depth of magmatic sources,Geology,2009(8).
[69]  Qu X M,Hou Z Q,Khin Zaw,Li Y G,Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan plateau:preliminary geochemical and geochronological results,Ore Geology Reviews,2007.
[70]  Qu X M,Hou Z Q,Li Y G,Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt,southern Tibetan plateau,Lithos,2004.
[71]  Redmond P B,Einaudi M T,Inan E E,Landtwing M R Heinrich C A,Copper deposition by fluid cooling in intrusion-centered systems:new insights from the Bingham porphyry ore deposit,Utah,Geology,2004(3).
[72]  Roedder E,Fluid inclusion studies on the porphyry-type ore deposits at Bingham,Utah,Butte,Montana,and Climax,Colorado,Economic Geology,1971(1).
[73]  Roedder E,Fluid Inclusions,Reviews in Mineralogy,Book Crafters,Inc,Michigan,1984.
[74]  Roedder E,Bodnar R J,Geologic pressure determinations from fluid inclusion studies,Annual Review of Earth and Planetary Sciences,1980.
[75]  Sourirajan S,Kennedy G C,The system H_2O-NaCl at elevated temperatures and pressures,American Journal of Science,1962(2).
[76]  Spicer R A,Harris N B W,Widdowson M,Herman A B Guo S X Valdes P J Wolfe J A Kelley S P,Constant elevation of southern Tibet over the past 15 million years,Nature,2003.
[77]  Suzuki T,Epstein S,Hydrogen isotope fractionation between OH-bearing minerals and water,Geochimica et Cosmochimica Acta,1976.
[78]  Taylor B E,Magmatic volatiles:isotopic variation of C,H,and S,Reviews in Mineralogy,1986.
[79]  Turner S,Hawkesworth G,Liu J,Rogers N Hawkesworth G J Harris N Kelley S van Calsteren P V Deng W,Timing of Tibetan uplift constrained by analysis of volcanic rocks,Nature,1993.
[80]  Ulrich T,Gunther D,Heinrich C A,The evolution of a porphyry Cu-Au deposit,based on LA-ICP-MS analysis of fluid inclusions:Bajo de la Alumbrera,Argentina,Economic Geology,2002(8).
[81]  Whitney J A,Vapor generation on a quartz monzonite magma;a synthetic model with application to porphyry copper deposits,Economic Geology,1975(2).
[82]  Wilkinson J J,Fluid inclusions in hydrothermal ore deposits,Lithos,2001(1-4).
[83]  Williams H,Turner S,Kelley S,Harris N,Age and composition of dikes in southern Tibet:new constraints on the timing of east-west extension ans it\'s relationship to post-collisional volcanism,Geology,2001.
[84]  Williams-Jones A E,Heinrich C A,Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits,Economic Geology,2005(7).
[85]  Yang Z M,Hou Z Q,White N C,Chang Z S,Li Z Q,Song Y C,Geology of the post-collisional porphyry copper molybdenum deposit at Qulong,Tibet,Ore Geology Reviews,2009.
[86]  Yin A,Harrison T M,Geologic evolution of the Himalayan-Tibetan orogen,Annual Review of Earth and Planetary Sciences,2000.
[87]  Zheng Y F,Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates,Earth and Planetary Science Letters,1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133