全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2011 

安徽铜陵狮子山矿田铜、金共生与分离的热力学研究

, PP. 731-743

Keywords: 共生与分离,迁移形式,热力学理论,狮子山铜金矿田,安徽铜陵

Full-Text   Cite this paper   Add to My Lib

Abstract:

狮子山矿田是安徽铜陵矿集区内最具代表性的大型铜金多金属矿田。矿田内铜、金矿床或矿体既各自独立产出,又相互共生或伴生,铜矿化和金矿化在时间上和空间上存在既共生又分离的现象。本文选择矿田内代表性铜矿床和金矿床开展系统的流体包裹体地球化学研究,并进行成矿流体中铜、金溶解度的热力学理论计算和分析,探索铜、金共生与分离的机制和制约因素。研究认为,狮子山矿田成矿热液流体中的铜主要以CuCl2-和CuCl0络合物形式迁移,铜的溶解度受热液中的Cl-浓度影响,铜的卸载沉淀主要受温度、pH值、fO2和fS2等因素控制;金主要以Au(HS)2-和Au2S(HS)22-络合物形式迁移,金的溶解度受热液中的总硫浓度影响,金的卸载沉淀同样受温度、pH值、fO2和fS2等因素控制。共存于同一成矿流体中的铜和金由于其络合物类型和溶解度的差异及其对物理化学条件变化作出的响应不同,铜在较高温度及偏酸性条件下即开始沉淀,而金则在较低温度和弱碱性条件下开始沉淀,因而导致铜和金的时空分离,进而分别形成铜矿床和金矿床。

References

[1]  Sun W D;Xie Z;ChenJ F;Zhang X Chai Z Du A Zhao J Zhang C Zhou T Os-Os dating of copper and molybdenum deposits along the Middle and Lower Reaches of Yangtze River,China [J] 2003(01) doi:10.2113/98.1.175
[2]  Seward T W Thiocomplexes of gold and the transport of gold in hydrothermal ore solutions [J] 1973 doi:10.1016/0016-7037(73)90207-X
[3]  Roedder E,Significance of Ca-Al-rich silicate melt inclusions in olivine crystals from the Murchison type Ⅱ carbonaceous chondrite,BULLETIN DE MINERALOGIE,1981.
[4]  Patterson D J;Ohmoto H;Solomon M Geologic setting and genesis of cassiterite-sulfide mineralization at Renison Bell,Western Tasmania [J] 1981 doi:10.2113/gsecongeo.76.2.393
[5]  Pan Y M;Dong P The Lower Changjiang (Yangzi/Yangzi River) metallogenic belt,east central China:intrusion and wall rock-hosted Cu-Fe-Au,Mo,Zn,Pb,Ag deposits [J] 1999 doi:10.1016/S0169-1368(99)00022-0
[6]  Lu S M;Xu X C;Xie Q Q;Lou J W Chu G Z Xiong Y P,Chemical and stable isotopnc geochemical characteristics of oreforming fluid of the Shizishan copper and gold ore-field,Tongling,China,Acta Petrologica Sinica,2007(1).
[7]  Lowell J D;Guilbert J M,Lateral and vertical alteration-mineralization zoning in porphyry ore deposits,Economic Geology,1970.
[8]  Kuehn C A;Arthur R W Carlin gold deposit,Nevada:Origin in deep zone of mixing between nomally pressured and overpressured fluids [J] 1995 doi:10.2113/gsecongeo.90.1.17
[9]  Johnson J W;Oelkers E H;Helgeson H C SUPCRT92:a software package for calculating the standard molal thermodynamic properties of minerals,gases,aqueous species,and reactions from 1 to 5000 bars and 0 to 1000°C [J] 1992 doi:10.1016/0098-3004(92)90029-Q
[10]  Hemley J J;Cygan G L;Fein J B,Hydrothermal ore-forming processes in the light of studies in rock-buffered system:I Iron-copper-zinc-lead sulfides solubility reactions,Economic Geology,1992.
[11]  Helgeson H C,Thermodynamics of hydrothermal systems at elevated temperatures and pressures,American Journal Scinece,1969.
[12]  Hall D L;Sterner S M;Bodnar R J,Freezing point depression of NaCl-KCl-H2O solution,Economic Geology,1988.
[13]  Du Y S;Tian S H;Li X J,Contrast in fluid metallogeny between the Tianmashan Au-S deposit and Datuanshan Cu deposit in Tongling,Anhui province,Acta Geologica Sinica,2003(01).
[14]  Cox D P;Singer D A,Mineral deposit models,US Geological Survey Bulletin,1986.
[15]  Bodnar B J Revised equation and table for determining the freezing point depression of H2O-NaCI solution [J] 1993 doi:10.1016/0016-7037(93)90378-A
[16]  Benning LG. ;Seward TM.,HYDROSULPHIDE COMPLEXING OF AU(I) IN HYDROTHERMAL SOLUTIONS FROM 150-400-DEGREES-C AND 500-1500BAR,Geochimica et Cosmochimica Acta?,1996, 60(11).
[17]  Benedetti M;Bouleque J Mechanism of gold transfer and deposition in a supergene environment [J] 1991 doi:10.1016/0016-7037(91)90126-P
[18]  BИ西尼雅科夫;江胜璧,内生矿床的一般矿石成因模式,1987.
[19]  朱和平;王莉娟;刘建明,不同成矿阶段流体包裹体气相成分的四极质谱测定,岩石学报,2003(02).
[20]  张德会,成矿流体中金的沉淀机理研究综述,矿物岩石,1997(04).
[21]  翟裕生;林新多;姚书振,长江中下游地区铁铜(金)成矿规律,北京:地质出版社,1992.
[22]  曾贻善,热水溶液中化学元素的迁移形式,北京:地质出版社,1993.
[23]  徐晓春,赵丽丽,谢巧勤,褚平利 房海波 王文俊,铜陵狮子山矿田金矿床和铜矿床矿石稀土元素地球化学,高校地质学报,2009(01).
[24]  徐晓春;尹滔;楼金伟;陆三明 谢巧勤 褚平利,铜陵冬瓜山层控矽卡岩型铜金矿床的成因机制:硫同位素制约,岩石学报,2010(09).
[25]  徐晓春;陆三明;谢巧勤;楼金伟 褚平利,安徽铜陵冬瓜山铜金矿床流体包裹体微量元素地球化学特征及其地质意义,岩石学报,2008(08).
[26]  徐晓春;陆三明;谢巧勤;柏林,储国正,铜陵狮子山矿田岩浆岩锫石SHRIMP定年及其成因意义,地质学报,2008(04).
[27]  徐克勤;朱金初,我国东南部几个断裂凹陷带中沉积(或火山沉积)-热液叠加类铁铜矿床成因探讨,福建地质科学情报,1978(04).
[28]  徐德义;於崇文;鲍征宇,热液成矿分带的径向对称性,地学前缘,2005(02).
[29]  涂光炽,中国层控矿床地球化学,北京:科学出版社,1988.
[30]  吴才来;董树文;国和平;郭祥焱 高前明 刘良根 陈其龙?雷敏 Wooden J L Mazadab F K Mattinson C,铜陵狮子山地区中酸性侵入岩锆石SHRIMP U-Pb定年及岩浆作用的深部过程,岩石学报,2008(8).
[31]  吴才来;周?若;黄许陈;张成火 黄文明,铜陵地区中酸性侵入岩年代学研究,岩石矿物学杂志,1996(04).
[32]  王彦斌;刘敦一;曾普胜;杨竹森 田世洪,安徽铜陵地区幔源岩浆底侵作用的时代--朝山辉石闪长岩锆石SHRIMP定年,地球学报,2004(04).
[33]  王莉娟,流体包裹体成分分析研究,地质论评,1998(05).
[34]  王登红,地幔柱及其成矿作用,北京:地震出版社,1998.
[35]  唐永成;吴言昌;储国正;邢凤鸣,王永敏,曹奋扬,常印佛,安徽沿江地区铜金多金属矿床地质,北京:地质出版社,1998.
[36]  谭凯旋,砂岩型铜矿床地球化学和成矿动力学,北京:地震出版社,1998.
[37]  饶纪龙,地球化学中的热力学,北京:科学出版社,1979.
[38]  孟祥金;侯增谦;高永丰;曲晓明 黄卫,碰撞造山型斑岩铜矿蚀变分带模式--以西藏冈底斯斑岩铜矿带为例,地学前缘,2004(1).
[39]  毛景文;邵拥军;谢桂清;张建东 陈毓川,长江中下游成矿带铜陵矿集区铜多金属矿床模型,矿床地质,2009(2).
[40]  常印佛;刘学圭,关于层控式矽卡岩型矿床--以安徽省内下扬子坳陷中一些矿床为例,矿床地质,1983(01).
[41]  常印佛;刘湘培;吴言昌,长江中下游铁铜成矿带,北京:地质出版社,1991.
[42]  刘斌;朱思林;沈昆,流体包裹体热力学参数计算软件及算例,北京:地质出版社,2000.
[43]  林传仙;白正华;张哲儒,矿物及有关化合物热力学数据手册,北京:科学出版社,1985.
[44]  胡受奚;陈武;华仁民,气化-热液矿床的侧向分带及其成因机制,矿床地质,1992(04).
[45]  黄许陈;储国正,铜陵狮子山矿田多位一体(多层楼)模式,矿床地质,1993(03).
[46]  邓晋福,吴宗絮,下扬子克拉通岩石圈减薄事件与长江中下游Cu、Fe成矿带,安徽地质,2001(02).
[47]  邓晋福,戴圣潜,赵海玲,杜建国,铜陵Cu-Au(Ag)成矿区岩浆-流体-成矿系统和亚系统的识别,矿床地质,2002(04).
[48]  储国正,铜陵狮子山矿田成矿系统及其找矿意义,北京:中国地质大学(北京),2003.
[49]  毛景文;胡瑞忠;陈毓川;王义天,大规模成矿作用与大型矿集区,北京:地质出版社,2006.
[50]  马东升,华南中、低温成矿带元素组合和流体性质的区域分布规律,矿床地质,1999(04).
[51]  陆三明,安徽铜陵狮子山铜金矿田岩浆作用和流体成矿,合肥:合肥工业大学,2007.
[52]  卢作祥;范永香;刘辅臣,成矿规律和成矿预测学,武汉:中国地质大学出版社,1989.
[53]  卢焕章,成矿流体,北京:北京科学技术出版社,1997.
[54]  陈毓川;朱裕生,中国矿床成矿模式,北京:地质出版社,1993.
[55]  刘斌;沈昆,流体包裹体热力学,北京:地质出版社,1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133