全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Laser Spectroscopy as a Tool for Gas Analysis Applications

DOI: 10.1155/2011/568913

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have used the traceable infrared laser spectrometric amount fraction measurement (TILSAM) method to perform absolute concentration measurements of molecular species using three laser spectroscopic techniques. We report results performed by tunable diode laser absorption spectroscopy (TDLAS), quantum cascade laser absorption spectroscopy (QCLAS), and cavity ring down spectroscopy (CRDS), all based on the TILSAM methodology. The measured results of the different spectroscopic techniques are in agreement with respective gravimetric values, showing that the TILSAM method is feasible with all different techniques. We emphasize the data quality objectives given by traceability issues and uncertainty analyses. 1. Introduction Throughout the last years many molecular laser spectroscopic techniques have been used to qualify and quantify different physical mechanisms taking place in atoms or molecules [1–7]. Molecular spectroscopy as performed by probing intra- and intermolecular vibrational transitions and further underlying rotational substructure has been used to study and illuminate bond structures and formation of atomic and molecular agglomerates and clusters [8, 9]. These techniques are applied due to the absorption, emission, or scattering of electromagnetic radiation by atoms or molecules. The choice of each of these physical phenomena, for example, absorption, for molecular species quantification or qualification, depends on the intended application. Absorption spectroscopy, for instance, is employed to identify and quantify molecular species in gas analysis applications such as remote sensing, atmospheric monitoring, vehicle exhaust emissions, or even exhaled breath gas tests [10–28]. In metrology, molecular absorption spectroscopy could be used to assign amount fractions (concentrations) to species in gas mixtures of known molecular constituents (Note, for a clarification of different terms in use see e.g.: http://goldbook.iupac.org/A00296.html). The determination of the amount fraction of a species without the use of calibrated reference gas mixtures, leads to the so-called “calibration-free” infrared spectrometry. Calibration-free means the amount of substance fraction of a species is measured in terms of the International System of Units (SI) derived unit mol·mol?1 without referencing to a standard or a measurement expressed in the same unit [29]. The desire to derive amount fraction results by means of spectroscopy that are directly traceable to the SI triggered the idea of a traceable infrared laser spectrometric amount fraction measurement

References

[1]  G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Rapid passage induced population transfer and coherences in the 8 micron spectrum of nitrous oxide,” Molecular Physics, vol. 105, no. 5–7, pp. 741–754, 2007.
[2]  W. Demtr?der, Laser Spectroscopy: Basic Principles, vol. 1, Springer, Berlin, Germany, 4th edition, 2008.
[3]  K. McCann, M. Wagner, A. Guerra, et al., “Spectroscopic investigations and potential energy surfaces of the ground and excited states of 1,3-benzodioxan,” Journal of Chemical Physics, vol. 131, no. 4, Article ID 044302, 2009.
[4]  V. A. Kapitanov, A. M. Solodov, T. M. Petrova, and Y. N. Ponomarev, “Fourier transform and photoacoustic absorption spectra of ethylene within 6035-6210?cm?1: comparative measurements,” International Journal of Spectroscopy, vol. 2010, Article ID 203672, 6 pages, 2010.
[5]  K. L. Plath, K. Takahashi, R. T. Skodje, and V. Vaida, “Fundamental and overtone vibrational spectra of gas-phase pyruvic acid,” Journal of Physical Chemistry A, vol. 113, no. 26, pp. 7294–7303, 2009.
[6]  M. Gharavi and S. G. Buckley, “Diode laser absorption spectroscopy measurement of linestrengths and pressure broadening coefficients of the methane 2 band at elevated temperatures,” Journal of Molecular Spectroscopy, vol. 229, no. 1, pp. 78–88, 2005.
[7]  X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, “Collision-induced infrared absorption by molecular hydrogen pairs at thousands of kelvin,” International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010.
[8]  F. Huisken, M. Kaloudis, M. Koch, and O. Werhahn, “Experimental study of the O-H ring vibrations of the methanol trimer,” Journal of Chemical Physics, vol. 105, no. 19, pp. 8965–8968, 1996.
[9]  F. Huisken, S. A. Krasnokutski, A. Y. Ivanov, and O. Werhahn, “The O-H stretching vibrations of glycine trapped in rare gas matrices and helium clusters,” Journal of Chemical Physics, vol. 111, no. 7, pp. 2978–2984, 1999.
[10]  J. Manne, O. Sukhorukov, W. J?ger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Applied Optics, vol. 45, no. 36, pp. 9230–9237, 2006.
[11]  I. Ventrillard-Courtillot, T. Gonthiez, C. Clerici, and D. Romanini, “Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy,” Journal of Biomedical Optics, vol. 14, no. 6, Article ID 064026, 2009.
[12]  M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O'Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Applied Physics B, vol. 81, no. 5, pp. 705–710, 2005.
[13]  G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems,” Applied Physics B, vol. 80, no. 4–5, pp. 617–625, 2005.
[14]  G. Maisons, P. Gorrotxategi Carbajo, M. Carras, and D. Romanini, “Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser,” Optics Letters, vol. 35, no. 21, pp. 3607–3609, 2010.
[15]  B. W. M. Moeskops, H. Naus, S. M. Cristescu, and F. J. M. Harren, “Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath,” Applied Physics B, vol. 82, pp. 649–654, 2006.
[16]  G. Wysocki, M. McCurdy, S. So, et al., “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Applied Optics, vol. 43, no. 32, pp. 6040–6046, 2004.
[17]  S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, et al., “Looking into the volcano with a Mid-IR DFB diode laser and cavity enhanced absorption spectroscopy,” Optics Express, vol. 14, no. 23, pp. 11442–11452, 2006.
[18]  K. Wunderle, S. Wagner, I. Pasti, et al., “Distributed feedback diode laser spectrometer at 2.7? m for sensitive, spatially resolved H2O vapor detection,” Applied Optics, vol. 48, no. 4, pp. B172–B182, 2009.
[19]  M. R. McCurdy, Y. Bakhirkin, G. Wysocki, and F. K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy,” Journal of Biomedical Optics, vol. 12, no. 3, Article ID 034034, 2007.
[20]  R. Q. Iannone, S. Kassi, H. J. Jost, et al., “Development and airborne operation of a compact water isotope ratio infrared spectrometer,” Isotopes in Environmental and Health Studies, vol. 45, no. 4, pp. 303–320, 2009.
[21]  V. Weldon, J. O'Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 1.57? m,” Sensors and Actuators B, vol. 29, no. 1–3, pp. 101–107, 1995.
[22]  M. Sowa, M. Mürtz, and P. Hering, “Mid-infrared laser spectroscopy for online analysis of exhaled CO,” Journal of Breath Research, vol. 4, no. 4, Article ID 047101, 2010.
[23]  C. E. Miller, L. R. Brown, R. A. Toth, D. C. Benner, and V. M. Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the orbiting carbon observatory (OCO) experiment,” Comptes Rendus Physique, vol. 6, no. 8, pp. 876–887, 2005.
[24]  D. Crisp, R. M. Atlas, F. M. Breon, et al., “The orbiting carbon observatory (OCO) mission,” Advances in Space Research, vol. 34, no. 4, pp. 700–709, 2004.
[25]  R. A. Toth, C. E. Miller, L. R. Brown, V. M. Devi, and D. C. Benner, “Line strengths of 16O13C16O, 16O13C18O, 16O13C17O and 18O13C18O between 2200 and 6800?cm?1,” Journal of Molecular Spectroscopy, vol. 251, no. 1–2, pp. 64–89, 2008.
[26]  E. R. Crosson, K. N. Ricci, B. A. Richman, et al., “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Analytical Chemistry, vol. 74, no. 9, pp. 2003–2007, 2002.
[27]  K. Heinrich, T. Fritsch, P. Hering, and M. Mürtz, “Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath,” Applied Physics B, vol. 95, no. 2, pp. 281–286, 2009.
[28]  A. Predoi-Cross, C. Hnatovsky, K. Strong, J. R. Drummond, and D. Chris Benner, “Temperature dependence of self- and N2-broadeningand pressure-induced shifts in the 3 ← 0 band of CO,” Journal of Molecular Structure, vol. 695–696, pp. 269–286, 2004.
[29]  O. Werhahn and J. C. Petersen, Eds., TILSAM Technical Protocol, Version 1.0, PTB: Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, 2010, http://www.euramet.org/fileadmin/docs/projects/934_METCHEM_Interim_Report.pdf.
[30]  EURAMET-934, TILSAM—Traceable Infrared Laser Spectrometric Amount Fraction Measurement, 2008, http://www.euramet.orgproject no. 934.
[31]  J. A. Nwaboh, O. Werhahn, and D. Schiel, “Measurement of CO amount fractions using a pulsed quantum-cascade laser operated in the intrapulse mode,” Applied Physics B, 2010.
[32]  P. Ortwein, W. Woiwode, S. Fleck, et al., “Absolute diode laser-based in situ detection of HCl in gasification processes,” Experiments on Fluids, vol. 49, no. 4, pp. 961–968.
[33]  Joint Committee for Guides in Metrology (JCGM), “Evaluation of measurement data—guide to the expression of uncertainty in measurement, GUM 1995 with minor corrections, ISO IEC Guide 98-3,” JCGM 100:2008, 2008, http://www.bipm.org/en/publications/guides/gum.html.
[34]  L. S. Rothman, et al., “HITRAN2008,” Journal of Qauntitative Spectroscopy and Radiative Transfer, vol. 110, pp. 533–572, 2009, http://www.cfa.harvard.edu/HITRAN/.
[35]  N. Jacquinet-Husson, N. A. Scott, A. Chédin, et al., “The GEISA spectroscopic database: current and future archive for earth and planetary atmosphere studies,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 109, no. 6, pp. 1043–1059, 2008.
[36]  G. J. Padilla-Víquez, J. Koelliker-Delgado, O. Werhahn, K. Jousten, and D. Schiel, “Traceable CO2-R (12) line intensity for laser-spectroscopy-based gas analysis near 2?μm,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 2, pp. 529–533, 2007.
[37]  G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” Journal of Chemical Physics, vol. 127, no. 8, Article ID 084311, 2007.
[38]  “EMRP Call 2010 Industry and Environment,” 2010, http://www.emrponline.eu/call2010/srte.html.
[39]  L. S. Rothman, N. Jacquinet-Husson, C. Boulet, and A. M. Perrin, “History and future of the molecular spectroscopic databases,” Comptes Rendus Physique, vol. 6, no. 8, pp. 897–907, 2005.
[40]  C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors, vol. 9, no. 10, pp. 8230–8262, 2009.
[41]  S. Welzel, G. Lombardi, P. B. Davies, R. Engeln, D. C. Schram, and J. R?pcke, “Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature,” Journal of Applied Physics, vol. 104, no. 9, Article ID 093115, 2008.
[42]  T. Fritsch, P. Hering, and M. Mürtz, “Infrared laser spectroscopy for online recording of exhaled carbon monoxide: a progress report,” Journal of Breath Research, vol. 1, no. 1, Article ID 014002, 2007.
[43]  J. Manne, W. J?ger, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Applied Physics B, vol. 94, no. 2, pp. 337–344, 2009.
[44]  S. Crunaire, J. Tarmoul, C. Fittschen, A. Tomas, B. Lemoine, and P. Coddeville, “Use of cw-CRDS for studying the atmospheric oxidation of acetic acid in a simulation chamber,” Applied Physics B, vol. 85, no. 2–3, pp. 467–476, 2006.
[45]  A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-doppler NICE-OHMS for quantitative trace gas detection,” Optics Express, vol. 16, no. 19, pp. 14689–14702, 2008.
[46]  V. Rozanov and A. Rozanov, “Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration,” Atmospheric Measurement Techniques, vol. 3, pp. 751–780, 2010, http://www.doas-bremen.de/doas_tutorial.htm.
[47]  M. Berglund and M. E. Wieser, “Isotopic compositions of elements 2009 (IUPAC Technical report),” Pure and Applied Chemistry, vol. 83, no. 2, pp. 397–410, 2011.
[48]  ISO 6143: 2001, Gas analysis: comparison methods for determining and checking the composition of calibration gas mixtures, International Organization for Standardization, Geneva, Switzerland, 2001.
[49]  Origin 7.5 SR6, OriginLab Cooperation, Northampton, Mass, USA, 2006.
[50]  K. Namjou, S. Cai, E. A. Whittaker, et al., “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Optics Letters, vol. 23, no. 3, pp. 219–223, 1998.
[51]  D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Applied Physics B, vol. 75, pp. 343–350, 2002.
[52]  E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Optics Letters, vol. 28, no. 1, pp. 16–18, 2003.
[53]  M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, and D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers,” Journal of the Optical Society of America B, vol. 20, no. 8, pp. 1761–1768, 2003.
[54]  B. Grouiez, B. Parvitte, L. Joly, D. Courtois, and V. Zeninari, “Comparison of a quantum cascade laser used in both cw and pulsed modes. applications to the study of SO2 lines around 9? m,” Applied Physics B, vol. 90, pp. 177–186, 2008.
[55]  J. Wagner, CH. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor lasers for sensing and diagnostics,” Applied Physics A, vol. 78, no. 4, pp. 505–512, 2004.
[56]  A. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Continuous-wave operation of λ ~ 4.8?μm quantum-cascade lasers at room temperature,” Applied Physics Letters, vol. 85, no. 12, pp. 2166–2168, 2004.
[57]  T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Applied Physics Letters, vol. 83, no. 10, pp. 1929–1931, 2003.
[58]  E. Theocharous, J. Ish II, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared region,” Applied Optics, vol. 43, no. 21, pp. 4182–4188, 2004.
[59]  S. Welzel, New Enhanced sensitivity infrared laser spectroscopy techniques applied to reactive plasmas and trace gas detection, Ph.D. thesis, Ernst-Moritz-Arndt-Universit?t Greifswald, Greifswald, Germany, 2009.
[60]  G. Berden and R. Engeln, Eds., Cavity Ring-Down Spectroscopy: Techniques and Applications, John Wiley & Sons, Chichester, UK, 2009.
[61]  R. D. van Zee and J. Patrick Looney, “Cavity-enhanced spectroscopies,” in Experimental Methods in the Physical Sciences, vol. 40, Academic Press, Amsterdam, The Netherlands, 2002.
[62]  J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Applied Physics B, vol. 80, no. 8, pp. 1027–1038, 2005.
[63]  Directive 2000/69/EC of the european parliament and of the council of 16 november 2000 relating to limit values for benzene and carbon monoxide in ambient air, Official Journal of the European Communities, 2000, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:313:0012:0021:EN:PDF.
[64]  J. Henningsen and H. Simonsen, “The (2201-0000) band of CO2 at 6348?cm?1: Linestrengths, broadening parameters, and pressure shifts,” Journal of Molecular Spectroscopy, vol. 203, no. 1, pp. 16–17, 2000.
[65]  Breath analysis as a diagnostic tool for early disease detection Joint Research Projects funded under iMERA-plus, T2.J02, 2010http://www.euramet.org/index.php?id=1011.
[66]  P. Ortwein, W. Woiwode, S. Wagner, M. Gisi, and V. Ebert, “Laser-based measurements of line strength, self and pressure-broadening coefficients of the H35Cl R(3) absorption line in the first overtone region for pressures up to 1?MPa,” Applied Physics B, vol. 100, no. 2, pp. 341–347, 2010.
[67]  D. Lisak, D. K. Havey, and J. T. Hodges, “Spectroscopic line parameters of water vapor for rotation-vibration transitions near 7180?cm?1,” Physical Review A, vol. 79, no. 5, Article ID 052507, 2009.
[68]  T. Laurila, Ed., “14th WMO/IAEA meeting of experts on carbon dioxide, other greenhouse gases and related tracer measurement techniques,” GAW Report 186, World Meteorological Organization (WMO), Geneva, Switzerland, 2009, http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133