Saenger E H, Gold N, Shapiro S A. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion, 2000, 31(1): 77-92.
[2]
McGarry R, Pasalic D, Ong C. Anisotropic elastic modeling on a Lebedev grid: Dispersion reduction and grid decoupling. 81st Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, 2011: 2829-2833.
[3]
祝贺君, 张伟, 陈晓非. 二维各向异性介质中地震波场的高阶同位网格有限差分模拟. 地球物理学报, 2009, 52(6): 1536-1546. Zhu H J, Zhang W, Chen X F. Two-dimensional seismic wave simulation in anisotropic media by non-staggered finite difference method. Chinese J. Geophys. (in Chinese), 2009, 52(6): 1536-1546.
[4]
李桂花, 冯建国, 朱光明. 黏弹性VTI介质频率空间域准P波正演模拟. 地球物理学报, 2011, 54(1): 200-207. Li G H, Feng J G, Zhu G M. Quasi-P wave forward modeling in viscoelastic VTI meida in frequency-space domain. Chinese J. Geophys. (in Chinese), 2011, 54(1): 200-207.
[5]
Alkhalifah T. Acoustic approximations for processing in transversely isotropic media. Geophysics, 1998, 63(2): 623-631.
[6]
Grechka V, Zhang L B, Rector J W. Shear waves in acoustic anisotropic media. Geophysics, 2004, 69(2): 576-582.
[7]
Duveneck E, Milcik P, Bakker P M, et al. Acoustic VTI wave equations and their application for anisotropic reverse-time migration. 78th Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, 2008: 2186-2190.
[8]
Pei Z L, Fu L Y, Sun W J, et al. Anisotropic finite-difference algorithm for modeling elastic wave propagation in fractured coalbeds. Geophysics, 2012, 77(1): C13-C26.
[9]
Jin S W, Jiang F, Ren Y Q, et al. Comparison of isotropic, VTI and TTI reverse time migration: an experiment on BP anisotropic benchmark dataset. 80th Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, 2010: 3198-3203.
[10]
Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 2007, 72(5): SM155-SM167.
[11]
Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 1985, 50(4): 705-708.
[12]
Bording R P. Finite difference modeling-nearly optimal sponge boundary conditions. 74th Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, 2004: 1921-1924.
[13]
陈颙, 黄庭芳, 刘恩儒. 岩石物理学. 合肥: 中国科学技术大学出版社, 2009. Chen Y, Huang T F, Liu E R. Rock Physics (in Chinese). Hefei: Press of University of Science and Technology of China, 2009.
[14]
Kristek J, Moczo P, Archuleta R. Efficient methods to simulate planar free surface in the 3D 4th-order staggered-grid finite-difference schemes. Stud. Geophys. Geod., 2002, 46(2): 355-381.
[15]
Lan H Q, Zhang Z J. Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation. Journal of Geophysics and Engineering, 2011, 8(2): 275-286.
[16]
张金川, 徐波, 聂海宽等. 中国页岩气资源勘探潜力. 天然气工业, 2008, 28(6): 136-141. Zhang J C, Xu B, Nie H K, et al. Exploration potential of shale gas resources in China. Natural Gas Industry (in Chinese), 2008, 28(6): 136-141.
[17]
张金川, 姜生玲, 唐玄等. 我国页岩气富集类型及资源特点. 天然气工业, 2009, 29(12): 109-114. Zhang J C, Jiang S L, Tang X, et al. Accumulation types and resources characteristics of shale gas in China. Natural Gas Industry (in Chinese), 2009, 29(12): 109-114.
[18]
Prasad M, Pal-Bathija A, Johnston M, et al. Rock physics of the unconventional. The Leading Edge, 2009, 28(1): 34-38.
[19]
Delle P C, Dewhurst D, Sarout J. TI or not TI? Stress effects on shale anisotropy. 14th International Workshop on Seismic Anisotropy, 2010: 41-42.
[20]
史謌, 邓继新. 地层条件下泥、页岩衰减各向异性研究. 中国科学 (D辑: 地球科学), 2005, 35(3): 268-275. Shi G, Deng J X. The attenuation anisotropy of mudstones and shales in subsurface formations. Science in China Series D: Earth Sciences, 2005, 48(11): 1882-1890.
[21]
Franquet J, Patterson D, Moos D, et al. Advanced dipole borehole acoustic processing-Rock Physics and Geomechanics Applications. 81st Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, 2011: 1876-1871.
[22]
杨顶辉, 滕吉文. 各向异性介质中三分量地震记录的FCT有限差分模拟. 石油地球物理勘探, 1997, 32(2): 181-190. Yang D H, Teng J W. FCT finite difference modeling of three-component seismic records in anisotropic medium. Oil Geophysical Prospecting (in Chinese), 1997, 32(2): 181-190.
[23]
Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 1986, 51(4): 889-901.
[24]
兰海强, 刘佳, 白志明. VTI介质起伏地表地震波场模拟. 地球物理学报, 2011, 54(8): 2072-2084. Lan H Q, Liu J, Bai Z M. Wave-filed simulation in VTI media with irregular free surface. Chinese J. Geophys. (in Chinese), 2011, 54(8): 2072-2084.
[25]
Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51(10): 1954-1966.
[26]
Zhou H, Zhang G, Bloor R. An anisotropic acoustic wave equation for VTI media. 68th EAGE Conference and Exhibition, 2006: 194-197.
[27]
Liu Y, Sen M K. A practical implicit finite-difference method: examples from seismic modelling. Journal of Geophysics and Engineering, 2009, 6(3): 231-249.
[28]
Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2): 185-200.
[29]
Sun W J, Zhou B Z, Hatherly P, et al. Seismic wave propagation through surface basalts-implications for coal seismic surveys. Exploration Geophysics, 2010, 41(1): 1-8.