全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非相干散射雷达和GPS观测研究MillstoneHill地区等离子体层电子含量

DOI: 10.6038/cjg20130303, PP. 738-745

Keywords: TEC,等离子体层,非相干散射雷达,GPSTEC,电离层

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文尝试结合非相干散射雷达和GPSTEC观测数据提取等离子体层总电子含量(PTEC).我们首先描述所用的技术方法,然后具体利用了MillstoneHill台站的观测数据研究该地区上空等离子体层总电子含量(PTEC)的变化情况.我们采用变化标高的Chapman函数对非相干散射雷达测得的电子浓度剖面数据进行拟合,然后通过对剖面积分得到100km到1000km高度范围的电离层总电子含量.GPS提供的TEC数据为高度达20200km的总电子含量,两者之差可近似看成等离子体层的电子含量.本文分别选取太阳活动高年(2000,2002年)和太阳活动低年(2005,2008年)MillstoneHill台站的静日数据进行研究.结果表明,等离子体层电子含量及其所占GPSTEC的比例具有明显的周日变化.PTEC含量在白天高于夜间,而所占GPSTEC的百分比,夜间明显高于白天.太阳活动高年所选月份等离子体层电子含量在4~14TECU(1TECU=1016el/m2)范围内变化,夜间所占比例可达60%左右.太阳活动低年所选月份等离子体层电子含量在3~7TECU范围内变化,所占比例夜间最高可达80%左右.我们所得到的结果与前人基于其它观测手段所得结果在变化趋势上一致,在量级上也大致相当.因此,这从一个侧面证明了我们所用方法的可靠性.非相干散射雷达能够探测包括F2层峰值以下及以上高度的电子浓度,利用这一设备所观测得到的资料来推算电离层电子含量将比前人基于电离层垂测仪观测资料进行的推算更具真实性,由此得到的等离子体层电子含量也将更为接近真实情况.

References

[1]  Kersley L, Klobuchar J A. Comparison of protonospheric electron content measurements from the American and European sectors. Geophys. Res. Lett., 1978, 5: 123-126.
[2]  Lunt N, Kersley L, Baily G J. The influence of the protonosphere on GPS observations: model simulations. Radio Sci., 1999, 34(3): 725-732.
[3]  Lunt N, Kersley L, Bishop G J, et al. The contribution of the protonosphere to GPS total electron content: experimental measurements. Radio Sci., 1999, 34(5): 1273-1280.
[4]  Reinisch B W, Huang X Q. Deducing topside profiles and Total Electron Content from bottomside ionograms. Adv. Space Res., 2001, 27(1): 23-30.
[5]  Liu J, Zhao B, Liu L. Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances. Ann. Geophys., 2010, 28(3): 795-805.
[6]  Belehaki A, Reinisch B, Jakowski N. Plasmaspheric electron content derived from GPS TEC and digisonde ionograms. Adv. Space Res., 2004, 33(6): 833-837.
[7]  Yizengaw E, Moldwin M B, Galvan D, et al. Global plasmaspheric TEC and its relative contribution to GPS TEC. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(11-12): 1541-1548.
[8]  Zhang M L, Radicella S M, Shi J K, et al. Comparison among IRI, GPS-IGS and ionogram-derived total electron contents. Adv. Space Res., 2006, 37(5): 972-977.
[9]  雷久候. 中纬电离层的统计分析与模式化研究[博士论文]. 北京: 中国科学院研究生院, 2005: 18-32. Lei J H. Modeling and statistic studies of mid-latitude ionosphere [Ph.D.thesis](in Chinese). Beijing: Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, 2005: 18-32.
[10]  毛田. 基于GPS台网观测的电离层TEC的现报与建模研究[博士论文]. 北京: 中国科学院研究生院, 2007: 28-38. Mao T. Nowcasting and modeling the ionospheric TEC from the observation of GPS network[Ph.D.thesis].(in Chinese). Beijing: Graduate University of the Chinese Academy of Sciences, 2007:28-38.
[11]  Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci., 1998, 33(3): 565.
[12]  Kil H, Paxton L J, Pi X, et al. Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere. J. Geophys. Res., 2003, 108(A11): 1391, doi: 10.1029/2002JA009782.
[13]  Liu L B, Le H J, Wan W X, et al. An analysis of the scale heights in the lower topside ionosphere based on the Arecibo incoherent scatter radar measurements. J. Geophys. Res., 2007, 112: A06307, doi: 10.1029/2007JA012250.
[14]  Liu L, Wan W, Zhang M L, et al. Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment. Ann. Geophysicae, 2007, 25(9): 2019-2027.
[15]  Fox M W. A simple, convenient formalism for electron density profiles. Radio Sci., 1994, 29(6): 1473-1491.
[16]  Breed A M, Goodwin G L, Vandenberg A M, et al. Ionospheric total electron content and slab thickness determined in Australia. Radio Sci., 1997, 32(4): 1635-1643.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133