全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新近月球重力场模型与地形模型的局部导纳和相关性分析

DOI: 10.6038/cjg20130307, PP. 783-791

Keywords: 重力场,地形,导纳谱,相关谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用三个高阶重力场模型LP150Q、GLGM-3和SGM150j以及嫦娥地形模型CLTM-s01,在频率域内使用固定窗口的方法,研究了不同重力场模型的重力/地形局部导纳谱与局部相关谱的全球分布,以及典型质量瘤盆地重力/地形局部导纳谱与局部相关谱分布的特征.结果表明:加入远月面重力场信息有助于增强重力场模型在中高频段的信号强度;三个重力场模型LP150Q、GLGM-3和SGM150j均适合于作近月面重力/地形局部导纳与局部相关性的分析和近月面地球物理参数的估计;重力场模型LP150Q和GLGM-3较适合作远月面大范围的研究,不适合于作远月面重力/地形局部导纳谱与局部相关谱的分析以及作远月面局部区域地球物理参数的估计,SGM150j较适合于作远月面局部区域地球物理参数的估计;近月面大型质量瘤盆地异常质量的尺度比远月面质量瘤盆地异常质量的大,而深度也比远月面的深.

References

[1]  Kaula W M. An Introduction to Planetary Physics: The Terrestrial Planets. New York: John Wiley, 1968.
[2]  McKenzie D. Surface deformation, gravity anomalies, and convection. J. Geophysics. Res., 1977, 48(2): 211-238.
[3]  Turcotte D L, Willemann R J, Haxby W F, et al. Role of membrane stresses in the support of planetary topography. J. Geophysics. Res., 1981, 86(B5): 3951-3959.
[4]  Ishihara Y, Namiki N, Sugita S, et al. Localized Gravity/Topography Correlation and Admittance Spectra on the Moon. Lunar and Planetary Science Conference, 2009, 40th, 1623.
[5]  Namiki N. Admittance and Correlation of Localized Gravity and Topography of Freundlich-Sharonov Basin of the Moon. Lunar and Planetary Science Conference, 2010, 41st, 1885.
[6]  Smith D E, Zuber M T, Neumann G A, et al. Initial observations from the Lunar Orbiter Laser Altimeter(LOLA). Geophys. Res. Lett., 2010, 37(18): 1-6.
[7]  Wieczorek M A, Simons F J. Localized spectral analysis on the sphere. J. Geophys. Res., 2005, 162(3): 655-675.
[8]  Konopliv A S. The lunar prospector Garvity Science Team, LP150Q Spherical Harmonic Model, 2000, available at http://pds-geosciences.wustl.edu/lunar01/lp-l-rss-5-gravity-v1/lp_1001/sha/jg1150q1.sha.
[9]  Konopliv A S, Asmar S W, Carranza E, et al. Recent gravity models as a result of the lunar prospector mission. Icarus, 2001, 150(1): 1-18.
[10]  Mazarico E, Lemoine F G, Han S H, et al. GLGM-3: A degree-150 lunar gravity model from the historical tracking data of NASA Moon orbiters. J. Geophysics. Res., 2010, 115(E05001): 1-14.
[11]  Goossens S J, Matsumoto K, Kikuchi F, et al. Improved high-resolution lunar gravity field model from SELENE and historical tracking data. AGU Fall Meeting, Abstract p44B-05, 2011.
[12]  鄢建国, 平劲松, Matsumoto K等. 嫦娥一号绕月卫星对月球重力场模型的优化. 中国科学:物理学力学天文学, 2011, 41(7): 870-878. Yan J G, Ping J S, Matsumoto K, et al. Optimization on lunar gravity field model using Chang''E-1 orbital tracking data. Scientia Sinica Phy, Mech & Astron, 2011, 41(7): 870-878.
[13]  Yan J G, Goossens S, Matsumoto K, et al. CEGM02: An improved lunar gravity model using Chang''E-1 orbital tracking data. Planetary and Space Science, 2011, 62(1): 1-9, doi: 10.1016/j.pss.2011.11.010.
[14]  Hirt C, Featherstone W E. A 1.5 km-resolution gravity field model of the moon. Earth and Planetary Science Letters, 2012, 329-330: 22-30.
[15]  Namiki N, Iwata T, Matsumoto K, et al. Farside gravity field of the Moon from four-way Doppler measurements of SELENE(Kaguya). Science, 2009, 323(5916): 900-905.
[16]  Simons M, Simons S C, Simons B H. Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus. J. Geophysics. Res., 1997, 131(1): 24-44.
[17]  梁青, 陈超, 黄倩等. 基于嫦娥一号地形数据的月球布格重力异常与撞击盆地演化. 中国科学G辑, 2009, 39(10): 1379-1386. Liang Q, Chen C, Huang Q, et al. Bouguer gravity anomaly of the Moon from CE-1 topography data: Implications for the impact basin evolution. Science in China Series G (in Chinese), 2009, 52(12): 1867-1875.
[18]  Lewis B T R, Dorman L M. Experimental Isostasy: 2. An isostatic model for the U.S.A. derived from gravity and topographic data. J. Geophys. Res., 1970, 75(17): 3367-3386.
[19]  Willemann R J, Turcotte D L. Support of topographic and other loads on the moon and on the terrestrial planets. Proc. Lunar Planet Sci., 1981, 12B: 837-851.
[20]  Parsons B, Sclater J G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 1977, 82(5): 802-827.
[21]  Crosby A, McKenzie D. Measurements of the elastic thickness under ancient lunar terrain. Icarus, 2005, 173(1): 100-107.
[22]  李斐, 柯宝贵, 王文睿等. 利用重力地形导纳估计月壳厚度. 地球物理学报, 2009, 52(8): 2001-2007. Li F, Ke B G, Wang W R, et al. Estimation of the ancient lunar crust thickness from the admittance. Chinese J. Geophys. (in Chinese), 2009, 52(8): 2001-2007.
[23]  Araki H, Tazawa H, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science, 2009, 323(5916): 897-900.
[24]  平劲松, 黄倩, 鄢建国等. 基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01. 中国科学G辑, 2008, 38(11): 1601-1612. Ping J S, Huang Q, Yan J G, et al. Lunar topographic model CLTM-s01 from Chang''E-1 laser altimeter. Science in China Series G (in Chinese), 2009, 52(7): 1105-1114.
[25]  Heiskanen W A, Moritz H. Physical Geodesy. San Francisco: Freeman, 1967.
[26]  鄢建国, 平劲松, 李斐等. 应用LP165P模型分析月球重力场特征及其对绕月卫星轨道的影响. 地球物理学报, 2006, 49(2): 408-414. Yan J G, Ping J S, Li F, et al. Character analysis of the lunar gravity field by the LP165P model and its effect on lunar satellite orbit. Chinese J. Geophys. (in Chinese), 2006, 49(2): 408-414.
[27]  Han S C, Mazarico E, Rowlands D, et al. New analysis of Lunar Prospector radio tracking data brings the nearside gravity field of the moon with an unprecedented resolution. Icarus, 2011, 215(2): 455-459.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133