全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合实地观测和STEREO/HI图像观测分析2010年CME事件

DOI: 10.6038/cjg20130304, PP. 746-757

Keywords: CME,STEREO,HI

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文使用了基于单颗STEREO卫星日球层成像仪(HeliosphericImager,HI)图像的固定Φ角拟合法(Fixed-Φ,FΦ)和调和均值拟合法(Harmonic-mean,HM),结合STEREO和ACE卫星的太阳风实地观测数据,深入分析了2010年15个日冕物质抛射(CME)事件,对比讨论了这两种方法在提取CME参数如太阳赤道平面的主传播方向、传播速度的效果,其中FΦ拟合法假设CME是固定方向传播的小质点,HM拟合法假设CME为具有球形前沿的通量绳结构,结果发现:(1)使用HM拟合法分析得到的CME主传播方向与太阳-实地观测点的夹角平均值是9.5°,小于FΦ拟合法的19.7°;(2)HM拟合法分析的预计到达时间与实测ICME起始时间的平均误差和最大误差分别为0.282天和0.805天,明显小于FΦ拟合法.本文也使用结合STEREO两颗卫星HI图像的直接三角法(Direct-triangulation,DT)和球面切线法(Tangent-to-a-sphere,TS),深入分析了5个朝向地球的CME事件,其中,DT和FΦ拟合法的假设相同,TS和HM拟合法的假设相同,结果发现:(1)这两种方法分析的CME主传播方向与日地连线的夹角最大值分别是13.2°和21.1°,明显小于单颗卫星观测的20.7°和27.5°;(2)其中4个CME事件使用方法得到的线性拟合加速度不超过0.4m·s-2,这说明CME在主传播方向上的速度变化在1AU内不超过100km·s-1;(3)使用TS方法得到的预计到达时间与实测ICME起始时间的绝对误差最小,平均值和最大值分别是2.3h和5.8h.可见,利用HI图像提取CME传播参数时,加入CME前沿结构假设和结合多角度观测都能够有效地减小拟合误差.

References

[1]  Bewsher D, Harrison R A, Brown D S. The relationship between EUV dimming and coronal mass ejections-I. statistical study and probability model. Astron. Astrophys., 2008, 478(3): 897-906.
[2]  Lippiello E, de Arcangelis L, Godano C. Different triggering mechanisms for solar flares and coronal mass ejections. Astron. Astrophys., 2008, 488(2): L29-L32.
[3]  Brueckner G E, Howard R A, Koomen M J, et al. The large angle spectroscopic coronagraph(LASCO). Solar Phys., 1995, 162(1-2): 357-402.
[4]  Schwenn R, dal Lago A, Huttunen E, et al. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys., 2005, 23(3): 1033-1059.
[5]  Gosling J T. Coronal mass ejections and magnetic flux ropes in interplanetary space. // AGU Geophys. Monogr. Ser. Washington D.C.: American Geophysical Union, 1990: 18937-18949.
[6]  Thernisien A F R, Howard R A, Vourlidas A. Modeling of flux rope coronal mass ejections. Astrophys. J., 2006, 262: 213-231.
[7]  Xie H, Ofman L, Lawrence G. Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res., 2004, 109(A3): 3109.
[8]  Xue X H, Wang C B, Dou X K. An ice-cream cone model for coronal mass ejections. J. Geophys. Res., 2005, 110: A08103.
[9]  Russell C T, Mulligan T. The true dimensions of interplanetary coronal mass ejections. Adv. Space Res., 2002, 29(3): 301-306.
[10]  Kaiser M L, Kucera T A, Davila J M, et al. The STEREO mission: an introduction. Space Sci. Res., 2008, 136(1-4): 5-16.
[11]  Howard R A, Moses J D, Socker D G, et al. Sun earth connection coronal and heliospheric investigation(SECCHI). Adv. Space Res., 2002, 29(12): 2017-2026.
[12]  Eyles C J, Harrison R A, Davis C J, et al. The heliospheric imagers onboard the STEREO mission. Solar Phys., 2009, 254(2): 387-445.
[13]  Kahler S W, Webb D F. V arc interplanetary coronal mass ejections observed with the solar mass ejection imager. J. Geophys. Res., 2007, 112(A9): 11.
[14]  Lugaz N, Vourlidas A, Roussev I I. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere-application to CME-CME interaction. Ann. Geophys, 2009, 27: 3479-3488.
[15]  Liu Y, Davies J A, Luhmann J G, et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1AU. Astrophys. J. Lett., 2010, 710(1): L82-L87.
[16]  Lugaz N, Hernandez-Charpak J N, Roussev I I, et al. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J., 2010, 715: 493-499.
[17]  Stone E C, Frandsen A M, Mewaldt R A, et al. The advanced composition explorer. Space Sci. Rev., 1998, 86: 1-22.
[18]  Thompson W T. Coordinate systems for solar image data. Astron. Astrophys., 2006, 449(2): 791-803.
[19]  Sheeley N R, Walters J H, Wang Y M, et al. Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res., 1999, 104(A11): 24739-24767.
[20]  Davies J A, Harrison R A, Rouillard A P, et al. A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys. Res. Lett., 2009a, 36(2): L02102.
[21]  Burlaga L F E. Magnetic clouds. // Physics of the inner heliosphere Ⅱ. Particles, Waves and Turbulence. Berlin: Springer, 1991: 1.
[22]  Domingo V, Fleck B, Poland A I. The SOHO mission: an overview. Solar Physics, 1995, 162(1-2): 1-37.
[23]  Thernisien A, Vourlidas A, Howard R A. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys., 2009, 256(1-2): 111-130.
[24]  Mierla M, Inhester B, Antunes A, et al. On the 3-d reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys., 2010, 28: 203-215.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133