Bewsher D, Harrison R A, Brown D S. The relationship between EUV dimming and coronal mass ejections-I. statistical study and probability model. Astron. Astrophys., 2008, 478(3): 897-906.
[2]
Lippiello E, de Arcangelis L, Godano C. Different triggering mechanisms for solar flares and coronal mass ejections. Astron. Astrophys., 2008, 488(2): L29-L32.
[3]
Brueckner G E, Howard R A, Koomen M J, et al. The large angle spectroscopic coronagraph(LASCO). Solar Phys., 1995, 162(1-2): 357-402.
[4]
Schwenn R, dal Lago A, Huttunen E, et al. The association of coronal mass ejections with their effects near the Earth. Ann. Geophys., 2005, 23(3): 1033-1059.
[5]
Gosling J T. Coronal mass ejections and magnetic flux ropes in interplanetary space. // AGU Geophys. Monogr. Ser. Washington D.C.: American Geophysical Union, 1990: 18937-18949.
[6]
Thernisien A F R, Howard R A, Vourlidas A. Modeling of flux rope coronal mass ejections. Astrophys. J., 2006, 262: 213-231.
[7]
Xie H, Ofman L, Lawrence G. Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res., 2004, 109(A3): 3109.
[8]
Xue X H, Wang C B, Dou X K. An ice-cream cone model for coronal mass ejections. J. Geophys. Res., 2005, 110: A08103.
[9]
Russell C T, Mulligan T. The true dimensions of interplanetary coronal mass ejections. Adv. Space Res., 2002, 29(3): 301-306.
[10]
Kaiser M L, Kucera T A, Davila J M, et al. The STEREO mission: an introduction. Space Sci. Res., 2008, 136(1-4): 5-16.
[11]
Howard R A, Moses J D, Socker D G, et al. Sun earth connection coronal and heliospheric investigation(SECCHI). Adv. Space Res., 2002, 29(12): 2017-2026.
[12]
Eyles C J, Harrison R A, Davis C J, et al. The heliospheric imagers onboard the STEREO mission. Solar Phys., 2009, 254(2): 387-445.
[13]
Kahler S W, Webb D F. V arc interplanetary coronal mass ejections observed with the solar mass ejection imager. J. Geophys. Res., 2007, 112(A9): 11.
[14]
Lugaz N, Vourlidas A, Roussev I I. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere-application to CME-CME interaction. Ann. Geophys, 2009, 27: 3479-3488.
[15]
Liu Y, Davies J A, Luhmann J G, et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1AU. Astrophys. J. Lett., 2010, 710(1): L82-L87.
[16]
Lugaz N, Hernandez-Charpak J N, Roussev I I, et al. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J., 2010, 715: 493-499.
[17]
Stone E C, Frandsen A M, Mewaldt R A, et al. The advanced composition explorer. Space Sci. Rev., 1998, 86: 1-22.
[18]
Thompson W T. Coordinate systems for solar image data. Astron. Astrophys., 2006, 449(2): 791-803.
[19]
Sheeley N R, Walters J H, Wang Y M, et al. Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res., 1999, 104(A11): 24739-24767.
[20]
Davies J A, Harrison R A, Rouillard A P, et al. A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys. Res. Lett., 2009a, 36(2): L02102.
[21]
Burlaga L F E. Magnetic clouds. // Physics of the inner heliosphere Ⅱ. Particles, Waves and Turbulence. Berlin: Springer, 1991: 1.
[22]
Domingo V, Fleck B, Poland A I. The SOHO mission: an overview. Solar Physics, 1995, 162(1-2): 1-37.
[23]
Thernisien A, Vourlidas A, Howard R A. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys., 2009, 256(1-2): 111-130.
[24]
Mierla M, Inhester B, Antunes A, et al. On the 3-d reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys., 2010, 28: 203-215.