全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

菲律宾海西北部岩芯记录的125ka以来的地磁场强度及其影响因素

DOI: 10.6038/cjg20130218, PP. 542-557

Keywords: 菲律宾海西北部,地磁场相对强度,低温和室温磁化率比值,磁性矿物粒度

Full-Text   Cite this paper   Add to My Lib

Abstract:

沉积物记录的地磁场强度首先提供了模拟地磁场演化的数据约束,其次提供了沉积物的年龄信息.本文报道了菲律宾海西北部岩芯记录的地磁场相对强度,并结合岩石磁学和沉积学性质探讨了影响强度的各个因素.除底部红粘土层的局部磁偏角偏转可能揭示了沉积后改造以外,磁化率各向异性和地磁场方向特征表明沉积物为原状沉积.岩石磁学性质表明沉积物符合磁性均一性,可以记录可靠的地磁场强度.由于红粘土层及其下部的磁偏角异常,本文讨论其上部约125ka的结果.常规归一方法获得的两个地磁场强度参数NRM/ARM(特征剩磁和非磁滞剩磁比值)和NRM/κ(特征剩磁和磁化率比值)与其它记录对比得到时间-深度对比点,对比点之间的年龄为线性内推或者外推.地磁场强度时间模型上的岩芯氧同位素与全球氧同位素综合曲线一致证明强度结果的有效性和对比的正确性.磁化率为归一参数的强度大多低于以非磁滞剩磁为归一参数的强度,频谱和相关分析证明NRM/ARM不与ARM和磁性矿物粒度(ARM/κ)相关,也没有轨道周期性,而NRM/κ却与κ和ARM/κ相关,而且有13~12ka的周期.由此我们认为NRM/ARM记录的地磁场强度比NRM/κ更好地消除了气候印记.进一步探讨了超顺磁含量、碳酸钙含量、磁性矿物组成以及磁性矿物粒度变化与地磁场强度差值的关系,发现末次间冰期较高的超顺磁含量和磁性矿物粒度的较大范围变化造成了地磁场强度差值,后者至少造成了90%差异.中等含量的碳酸钙和较小的磁性矿物组成变化不是磁场强度差值产生的原因.如何校正磁性矿物粒度变化的影响将是下一步工作的重点.

References

[1]  Sawada K, Handa N. Variability of the path of the Kuroshio ocean current over the past 25000 years. Nature, 1998, 392(6676): 592-595.
[2]  Yang X Q, Heller F, Wu N, et al. Geomagnetic paleointensity dating of South China Sea sediments for the last 130kyr. Earth Planet. Sci. Lett., 2009, 284(1-2): 258-266.
[3]  葛淑兰, 石学法, 杨刚等. 西菲律宾海780ka以来气候变化的岩石磁学记录: 基于地磁场相对强度指示的年龄框架. 第四纪研究, 2007, 27(6): 1040-1052. Ge S L, Shi X F, Yang G, et al. Rock magnetic response to climatic changes in west Philippine Sea for the last 780ka: based on relative paleointensity assisted chronology. Quaternary Sciences (in Chinese), 2007, 27(6): 1040-1052.
[4]  孟庆勇, 李安春, 李铁刚等. 西菲律宾海沉积物200ka以来的地球磁场相对强度记录及其年代学意义. 中国科学 (D辑: 地球科学), 2009, 39(1): 24-34. Meng Q Y, Li A C, Li T G, et al. Relative paleointensity of the geomagnetic field during the past 200ka from the West Philippine Sea and its chronological significance. Science in China (Series D: Earth Sciences), 2009, 52(8): 1115-1126.
[5]  Inoue S, Yamazaki T. Geomagnetic relative paleointensity chronostratigraphy of sediment cores from the Okhotsk Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(3-4): 253-266.
[6]  Chou Y M, Lee T Q, Song S R, et al. Magnetostratigraphy of marine sediment core MD01-2414 from Okhotsk Sea and its paleoenvironmental implications. Marine Geology, 2011, 284(1-4): 149-157.
[7]  Hofmann D I, Fabian K. Rock magnetic properties and relative paleointensity stack for the last 300ka based on a stratigraphic network from the subtropical and subantarctic South Atlantic. Earth Planet. Sci. Lett., 2007, 260(1-2): 297-312.
[8]  Hofmann D I, Fabian K. Correcting relative paleointensity records for variations in sediment composition: Results from a South Atlantic stratigraphic network. Earth Planet. Sci. Lett., 2009, 284(1-2): 34-43.
[9]  佩维·A B. 菲律宾海底地质. 刘昭蜀, 于珏译. 北京: 海洋出版社, 1989. Peiwei A B. Philippine Seafloor Geology (in Chinese). Translated by Liu Z S, Yu Y. Beijing: Ocean Press, 1989.
[10]  Qiu B. Kuroshio and Oyashio currents. // Steele J H, Turekian K K eds. Encyclopedia of Ocean Sciences. Volume 3. New York: Elsevier Ltd, 2001: 1413-1425.
[11]  Weeks R, Lai C, Endidnoux L, et al. Improvements in long-core measurement techniques: applications in palaeomagnetism and palaeoceanography. Geophys. J. Int., 1993, 114(3): 651-662.
[12]  Tian J, Wang P X, Cheng X R, et al. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison. Earth Planet. Sci. Lett., 2002, 203(3-4): 1015-1029.
[13]  Joseph L H, Rea D K, van der Pluijm B A. Use of grain size and magnetic fabric analyses to distinguish among depositional environments. Paleoceanography, 1998, 13(5): 491-501.
[14]  Tauxe L. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev. Geophys., 1993, 31(3): 319-354.
[15]  Valet J P. Time variations in geomagnetic intensity. Rev. Geophys., 2003, 41(1), doi: 10.1029/2001RG000104.
[16]  李海燕, 张世红. 黄铁矿加热过程中的矿相变化研究——基于磁化率随温度变化特征分析. 地球物理学报, 2005, 48(6): 1384-1391. Li H Y, Zhang S H. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities. Chinese J. Geophys. (in Chinese), 2005, 48(6): 1384-1391.
[17]  Dunlop D J, ?zdemir ?. Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press, 1997.
[18]  胡守云, Appel E, Hoffmann V等. 湖泊沉积物中胶黄铁矿的鉴出及其磁学意义. 中国科学(D辑: 地球科学), 2002, 32(3): 234-238. Hu S Y, Appel E, Hoffmann V, et al. Identification of greigite in lake sediments and its magnetic significance. Science in China (Series D: Earth Sciences), 2002, 45(1): 81-87.
[19]  Dunlop D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 2002, 107(B3): EMP4-1-EMP4-22.
[20]  Guyodo Y, Valet J P. Global changes in intensity of the Earth''s magnetic field during the past 800 kyr. Nature, 1999, 399(6733): 249-252.
[21]  Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 2005, 20(1): PA1003, doi: 10.1029/2004PA001071.
[22]  Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. // Berger A L, Lmbrie J, Hays H eds. Milankovitch and Climate. Dordrecht: Reidel Publishing Company, 1984: 269-305.
[23]  Guyodo Y, Gaillot P, Channell J E T. Wavelet analysis of relative geomagnetic paleointensity at ODP site 983. Earth Planet. Sci. Lett., 2000, 184(1): 109-123.
[24]  Ellwood B B, Ledbetter M T. Paleocurrent indicators in deep-sea sediment. Science, 1979, 203(4387): 1335-1337.
[25]  Liu B Z, Saito Y, Yamazaki T, et al. Paleocurrent analysis for the Late Pleistocene-Holocene incised-valley fill of the Yangtze delta, China by using anisotropy of magnetic susceptibility data. Marine Geology, 2001, 176(1-4): 175-189.
[26]  Rosenbaum J, Richard R, Smoot J, et al. Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: reevaluation of the paleomagnetic record of Pleistocene sediments from drill hole OL-92, Owens Lake, California. Earth Planet. Sci. Lett., 2000, 178(3-4): 415-424.
[27]  Ge S L, Shi X F, Liu Y G, et al. Turbidite and bottom-current evolution revealed by anisotropy of magnetic susceptibility of redox sediments in the Ulleung Basin, Sea of Japan. Chinese Science Bulletin, 2012, 57(6): 660-672.
[28]  Thouveny N, Carcaillet J, Moreno E, et al. Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth Planet. Sci. Lett., 2004, 219(3-4): 377-396.
[29]  Butler R F. Paleomagnetism: Magnetic Domains to Geologic Terranes. Boston,Oxford: Blackwell Science, 1992.
[30]  Lean C M B, McCave I N. Glacial to interglacial mineral magnetic and palaeoceanographic changes at Chatham Rise, SW Pacific Ocean. Earth Planet. Sci. Lett., 1998, 163(1-4): 247-260.
[31]  Horng C S, Roberts A P, Liang W T. A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea. J. Geophys. Res., 2003, 108(B1): 2059, doi: 10.1029/2001JB001698.
[32]  Tauxe L, Pick T, Kok Y S. Relative paleointensity in sediments: a pseudo-Thellier approach. Geophys. Res. Lett., 1995, 22(21): 2885-2888.
[33]  Copons R, Parés J M, Dinarés-Turell J, et al. Sampling induced AMS in soft sediments: a case study in Holocene glaciolacustrine rhythmites from Lake Barrancs (Central Pyrenees, Spain). Phys. Chem. Earth, 1997, 22(1-2): 137-141.
[34]  Roberts A P, Cui Y L, Verosub K L. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res., 1995, 100(B9): 17909-17924.
[35]  Dunlop D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res., 2002, 107(B3): EMP5-1-EMP5-15.
[36]  Parry L G. Shape-related factors in the magnetization of immobilized magnetite particles. Phys. Earth Planet. Inter., 1980, 22(2): 144-154.
[37]  Channell J E T, Xuan C, Hodell D A. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett., 2009, 283(1-4): 14-23.
[38]  Yamamoto Y, Yamazaki T, Kanamatsu T, et al. Relative paleointensity stack during the last 250 kyr in the northwest Pacific. J. Geophys. Res., 2007, 112(B1): B01104, doi: 10.1029/2006JB004477.
[39]  Tauxe L, Shackleton N J. Relative paleointensity records from the Ontong-Java Plateau. Geophys. J. Int., 1994, 117(3): 769-782.
[40]  Roberts A P, Lehman B, Weeks R J, et al. Relative paleointensity of the geomagnetic field over the last 200000 years from ODP Sites 883 and 884, North Pacific Ocean. Earth Planet. Sci. Lett., 1997, 152(1-4): 11-23.
[41]  Yamazaki T, Abdeldayem A L, Ikehara K. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years. Earth, Planets and Space, 2003, 55(6): 327-340.
[42]  Tarling D H, Hrouda F. The Magnetic Anisotropy of Rocks. London: Chapman & Hall, 1993.
[43]  Kissel C, Laj C, Mazaud A, et al. Magnetic anisotropy and environmental changes in two sedimentary cores from the Norwegian Sea and the North Atlantic. Earth Planet. Sci. Lett., 1998, 164(3-4): 617-626.
[44]  Wang R H, Lvlie R. SP-grain production during thermal demagnetization of some Chinese loess/palaeosol. Geophys. J. Int., 2008, 172(2): 504-512.
[45]  Yamazaki T, Ioka N. Environmental rock-magnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene. Paleoceanography, 1997, 12(1): 111-124.
[46]  Glasby G P. Mineralogy, geochemistry, and origin of Pacific red clays: a review. New Zealand Journal of Geology and Geophysics, 1991, 34(2): 167-176.
[47]  Thompson R, Oldfield F. Environmental Magnetism. New South Wales: Allen and Unwin, 1986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133