全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

团体粒子群与最大能量串行融合算法转换波静校正

DOI: 10.6038/cjg20130124, PP. 239-245

Keywords: 转换波,静校正,粒子群算法,最大能量法

Full-Text   Cite this paper   Add to My Lib

Abstract:

估计转换波的静校正量是一个复杂的非线性问题,常规的线性静校正方法无法取得好的效果.粒子群算法是一种很好的非线性全局最优化方法,但其缺点是"早熟"现象严重.最大能量法是一种常规求取静校正量的方法,局部寻优能力强且收敛速度快是其优点,但是当地震记录含有大的静校正量时易收敛于局部极值.本文在标准粒子群算法的基础上发展出了一种改进的粒子群算法:团体粒子群算法.并且通过对Rastrigin函数的寻优实验证明了其全局寻优能力优于标准粒子群算法.同时为了解决转换波静校正问题串行融合了团体粒子群算法和最大能量法.最后,建立了含一个水平反射层的模型并合成地震记录,加入随机值作为检波点静校正量.对合成的地震数据分别利用团体粒子群和最大能量的串行融合算法、标准粒子群算法和最大能量法求取静校正量并进行静校正.结果证明串行融合算法得到的静校正量与理论值误差很小,静校正后的叠加剖面连续性较好.

References

[1]  Eaton D W S, Cary P W, Schafer A W. Estimation of P-SV residual statics using stack power optimization. The CREWES Research Report: University of Calgary, 3. 1991.
[2]  Cary P W, Eaton D W S. A simple method for resolving large converted-wave (P-SV) statics. Geophysics, 1993, 58(3): 429-433.
[3]  Rothman D H. Automatic estimation of large residual statics corrections. Geophysics, 1986, 51(2): 332-346.
[4]  林依华, 张忠杰, 尹成等. 复杂地形条件下静校正的综合寻优. 地球物理学报, 2003, 46(1): 101-106. Lin Y H, Zhang Z J, Yin C, et al. Hybrid optimization of static estimation in complex topography. Chinese J. Geophys. (in Chinese), 2003, 46(1): 101-106.
[5]  刘鹏程, 纪晨. 改进的模拟退火-单纯形综合反演方法. 地球物理学报, 1995, 38(2): 199-205. Liu P C, Ji C. An improved simulated annealing-downhill simplex hybrid global inverse algorithm. Chinese J. Geophys. (in Chinese), 1995, 38(2): 199-205.
[6]  Armin W Schafer. Converted-wave statics methods comparison. in The CREWES Research Report: University of Calgary. 1991.
[7]  Ronen J, Claerbout J F. Surface-consistent residual statics estimation by stack-power maximization. Geophysics, 1985, 50(12): 2759-2767.
[8]  吴波, 尹成, 潘树林等. 最大能量法剩余静校正的改进. 石油地球物理勘探, 2010, 4(3): 350-354. Wu B, Yin C, Pan S L, et al. The improvements on maximum energy method residual static correction. Oil Geophysical Prospecting (in Chinese), 2010, 4(3): 350-354.
[9]  Kennedy J, Eberhart R C. Particle swarm optimization. // Proc. IEEE Conf. on Neural Networks, IV. Piscataway, NJ, 1995, 1942-1948.
[10]  Eberhart R, Kennedy J. A new optimizer using Particle Swarm theory. // Proceedings of the sixth international symposium on Micro Machine and Human Science. Nagoya Japan, 1995: 39-43.
[11]  Shi Y H, Eberhart R. A modified particle swarm optimizer. IEEE International Conference of Evolutionary Computation, Anchorage, Alaska, May 1998.
[12]  杨维, 李歧强. 粒子群优化算法综述. 中国工程科学, 2004, 6(5): 87-94. Yang W, Li Q Q. Survey on particle swarm optimization algorithm. Engineering Science (in Chinese), 2004, 6(5): 87-94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133