全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用地震海洋学方法估算南海中尺度涡的地转流速

DOI: 10.6038/cjg20130118, PP. 181-187

Keywords: 地震海洋学,南海西南次海盆,中尺度涡,地转剪切

Full-Text   Cite this paper   Add to My Lib

Abstract:

中尺度涡是重要的海洋学现象,它在很大程度上影响着海洋内部的能量传递过程.由于传统海洋学观测手段的固有局限性,一直以来对中尺度涡观测和研究的程度都比较低.地震海洋学的诞生和发展为海洋学观测提供了一个全新的手段.对南海的历史地震数据重新处理后,我们首次在本研究海域的地震剖面上看到了透镜状结构.它位于南海西南次海盆(~113.6°E,11.4°N),中心深度约为450m,中心厚度约为300m,半径约为55~65km,具有典型的中尺度涡特征,综合解释为反气旋.我们利用地震海洋学方法估算了地转剪切,结合来自于卫星高度数据的海表面地转流速度进一步得到了绝对流速的垂向剖面.结果显示,流速的最大值约为0.7m/s,出现在400~450m处,对应于涡旋的中心深度;西北部分为正,东南部分为负,整体呈现出顺时针的转动方向,说明了它是一个反气旋结构.

References

[1]  宋海斌, Pinheiro L, 王东晓等. 海洋中尺度涡与内波的地震图像. 地球物理学报, 2009, 52(11): 2775-2780. Song H B, Pinheiro L, Wang D X, et al. Seismic images of ocean meso-scale eddies and internal waves. Chinese J. Geophys. (in Chinese), 2009, 52(11): 2775-2780.
[2]  Biescas B, Sallarès V, Pelegrí J L, et al. Imaging meddy finestructure using multichannel seismic reflection data. Geophys. Res. Lett., 2008, 35: L11609, doi: 10.1029/2008GL033971.
[3]  董崇志, 宋海斌, 郝天珧等. 南海东北部海洋内波的反射地震研究. 地球物理学报, 2009, 52(8): 2050-2055. Dong C Z, Song H B, Hao T Y, et al. Studying of oceanic internal wave spectra in the Northeast South China Sea from seismic reflections. Chinese J. Geophys. (in Chinese), 2009, 52(8): 2050-2055.
[4]  Zhu X H, Park J H, Wimbush M, et al. Comment on "Current system east of the Ryukyu Islands" by A. Nagano et al. Journal of Geophysical Research, 2008, 113: C03020, doi: 10.1029/2007JC004458.
[5]  Holbrook W S, Páramo P, Pearse S, et al. Thermohaline fine structure in an oceanographic front from seismic reflection Profiling. Science, 2003, 301(5634): 821-824.
[6]  宋海斌, 董崇志, 陈林等. 用反射地震方法研究物理海洋-地震海洋学简介. 地球物理学进展, 2008, 23(4): 1156-1164. Song H B, Dong C Z, Chen L, et al. Reflection seismic methods for studying physical oceanography: Introduction of seismic oceanography. Progress in Geophysics (in Chinese), 2008, 23(4): 1156-1164.
[7]  Song H B, Pinheiro L M, Ruddick B, et al. Seismic Oceanography: a new geophysical tool to investigate the thermohaline structure of the oceans. // Marcelli M ed. Oceanography. In Tech Press, 2012: 113-128.
[8]  Ruddick B, Song H B, Dong C Z, et al. Water column seismic images as maps of temperature gradient. Oceanography, 2009, 22(1): 192-205.
[9]  Song H B, Pinheiro L M, Ruddick B, et al. Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia). Journal of Marine Research, 2011, 69(4-6): 827-842.
[10]  Buffett G G, Biescas B, Pelegrí J L, et al. Seismic reflection along the path of the Mediterranean Undercurrent. Continental Shelf Research, 2009, 29(15): 1848-1860.
[11]  Nandi P, Holbrook W S, Pearse S, et al. Seismic reflection imaging of water mass boundaries in the Norwegian Sea. Geophys. Res. Lett., 2004, 31: L23311, doi: 10.1029/2004GL021325.
[12]  Biescas B, Armi L, Sallarès V, et al. Seismic imaging of staircase layers below the Mediterranean Undercurrent. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(10):1345-1353.
[13]  Fer I, Nandi P, Holbrook W S, et al. Seismic imaging of a thermohaline staircase in the western tropical North Atlantic. Ocean Sci., 2010, 6(3): 621-631.
[14]  黄兴辉, 宋海斌, Pinheiro L M等. 利用反射地震数据和XBT数据联合反演海水的温盐颁布. 地球物理学报, 2011, 54(5): 1293-1300. Huang X H, Song H B, Pinheiro L M, et al. Ocean temperature and salinity distributions inverted from combined reflection seismic and XBT data. Chinese J. Geophys. (in Chinese), 2011, 54(5): 1293-1300.
[15]  宋洋, 宋海斌, 陈林等. 利用地震数据反演海水温盐结构. 地球物理学报, 2010, 53(11): 2696-2702. Song Y, Song H B, Chen L, et al. Sea water thermohaline structure inversion from seismic data. Chinese J. Geophys. (in Chinese), 2010, 53(11): 2696-2702.
[16]  Wood W T, Holbrook W S, Sen M K, et al. Full waveform inversion of reflection seismic data for ocean temperature profiles. Geophys. Res. Lett., 2008, 35: L04608, doi: 10.1029/2007GL032359.
[17]  Papenberg C, Klaeschen D, Krahmann G, et al. Ocean temperature and salinity inverted from combined hydrographic and seismic data. Geophys. Res. Lett., 2010, 37: L04601, doi: 10.1029/2009GL042115.
[18]  Holbrook W S, Fer I. Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., 2005, 32: L15604, doi: 10.1029/2005GL023733.
[19]  Krahmann G, Brandt P, Klaeschen D, et al. Mid-depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data. Journal of Geophysical Research, 2008, 113: C12016, doi: 10.1029/2007JC004678.
[20]  宋海斌, 拜阳, 董崇志等. 南海东北部内波特征——经验模态分解方法应用初探. 地球物理学报, 2010, 53(2): 393-400. Song H B, Bai Y, Dong C Z, et al. A preliminary study of application of Empirical Mode Decomposition method in understanding the features of internal waves in the northeastern South China Sea. Chinese J. Geophys. (in Chinese), 2010, 53(2): 393-400.
[21]  Song H B, Bai Y, Pinheiro L M, et al. Analysis of ocean internal waves imaged by multichannel reflection seismics, using Ensemble Empirical Mode Decomposition. Journal of Geophysics and Engineering, 2012, 9(3): 302-311, doi: 10.1088/1742-2132/9/3/302.
[22]  Sheen K L, White N J, Hobbs R W, et al. Estimating mixing rates from seismic images of oceanic structure. Geophys. Res. Lett., 2009, 36: L00D04, doi: 10.1029/2009GL040106.
[23]  Sheen K L, White N J, Caulfield C P, et al. Estimating geostrophic shear from seismic images of oceanic structure. Journal of Atmospheric and Oceanic Technology, 2011, 28(9): 1149-1154.
[24]  Hwang C, Chen S A. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. Journal of Geophysical Research, 2000, 105(C10): 23943-23965.
[25]  Wang G H, Su J, Chu P C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 2003, 30(21): 2121, doi: 10.1029/2003GL018532.
[26]  Krahmann G, Papenberg C, Brandt P, et al. Evaluation of seismic reflector slopes with a Yoyo-CTD. Geophys. Res. Lett., 2009, 36: L00D02, doi: 10.1029/2009GL038964.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133