全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TI介质局部角度域射线追踪与叠前深度偏移成像

DOI: 10.6038/cjg20130128, PP. 269-279

Keywords: 横向各向同性,射线追踪,声学近似,相速度,局部角度域,叠前深度偏移

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究与实践表明,对于长偏移距、宽方位地震数据,忽略各向异性会明显降低成像质量,影响储层预测与描述的精度.针对典型的横向各向同性(TI)介质,本文面向深度域构造成像与偏移速度分析的需要,研究基于射线理论的局部角度域叠前深度偏移成像方法.它除了像传统Kirchhoff叠前深度偏移那样输出成像剖面和炮检距域的共成像点道集,还遵循地震波在成像点处的局部方向特征、基于扩展的脉冲响应叠加原理获得入射角度域和照明角度域的成像结果.为了方便快捷地实现TI介质射线走时与局部角度信息的计算,文中讨论和对比了两种改进的射线追踪方法:一种采用从经典各向异性介质射线方程演变而来的由相速度表征的简便形式;另一种采用由对称轴垂直的TI(即VTI)介质声学近似qP波波动方程推导出来的射线方程.文中通过坐标旋转将其扩展到了对称轴倾斜的TI(即TTI)介质.国际上通用的理论模型合成数据偏移试验表明,本文方法既适用于复杂构造成像,又可为TI介质深度域偏移速度分析与模型建立提供高效的偏移引擎.

References

[1]  Kumar D, Sen M K, Ferguson R J. Traveltime calculation and prestack depth migration in tilted transversely isotropic media. Geophysics, 2004, 69(1): 37-44.
[2]  Zhu T F, Gray S H, Wang D L. Prestack Gaussian-beam depth migration in anisotropic media. Geophysics, 2007, 72(3): S133-S13.
[3]  de Hoop M V, Bleistein N. Generalized radon transform inversions for reflectivity in anisotropic elastic media. Inverse Problems, 1997, 13(3): 669-690.
[4]  Koren Z, Ravve I, Ragoza E, et al. Full-azimuth angle domain imaging. SEG Technical Program Expanded Abstracts, 2008: 2221-2225.
[5]  Cheng J B, Wang T F, Wang C L, et al. Azimuth-preserved local angle-domain prestack time migration in isotropic, vertical transversely isotropic and azimuthally anisotropic media. Geophysics, 2012, 77(2): S51-S64.
[6]  Vidale J E. Finite-difference calculation of traveltimes in three dimensions. Geophysics, 1990, 55(5): 521-526.
[7]  Schneider W A, Ranzinger K A, Balch A H, et al. A dynamic programming approach to first-arrival traveitlme computation in media with arbitrarily distributed velocities. Geophysics, 1992, 57(1): 39-50.
[8]  Farra V. Ray tracing in complex media. Journal of Applied Geophysics, 1993, 30(1-2): 55-73.
[9]  Cerveny V. Seismic Ray Theory. Cambridge: Cambridge University Press, 2001.
[10]  Zhu T F, Gray S H, Wang D. Kinematic and dynamic raytracing in anisotropic media-a phase-velocity formulation. Theory and application: 75th Annual International Meeting, SEG, ExpandedAbstracts, 2005, 96-99.
[11]  吴国忱. 各向异性介质地震波传播与成像. 东营: 中国石油大学出版社, 2005. Wu G C. Seismic Wave Propagation and Imaging in Anisotropic Medium (in Chinese). Dongying: China Petroleum University Press, 2005.
[12]  康玮, 程玖兵. 横向各向同性介质拟声波方程及其在逆时偏移中的应用. 地球物理学报, 2012, 55(3): 1033-1045. Kang W, Cheng J B. Pseudo-acoustic wave equations for reverse-time migration in TI media. Chinese J. Geophys. (in Chinese), 2012, 55(3): 1033-1045.
[13]  Xu S, Chauris H, Lambaré G, et al. Common-angle migration: A strategy for imaging complex media. Geophysics, 2001, 66(6): 1877-1894.
[14]  Brandsberg-Dahl S, Ursin B, de Hoop M V. Seismic velocity analysis in the scattering angle/azimuth domain. Geophysical Prospecting, 2003, 51(4): 295-314.
[15]  Bleistein N, Gray S H. A proposal for common-openingangle migration/inversion. Center for Wave Phenomena, Colorado School of Mines. Research Report CWP-420, 2002.
[16]  Zhu T F, Gray S H, Wang D L. Prestack gaussian-beam depth migration in anisotropic media. Geophysics, 2007, 72(3): S133-S138.
[17]  Alkhalifah T. An acoustic wave equation for anisotropic media. Geophysics, 2000, 65(4): 1239-1250.
[18]  Audebert F, Froidevaux P, Racotoarisoa H, et al. Insights into migration in the angle domain. SEG Technical Program Expanded Abstracts, 2002: 1188-1191.
[19]  Tsvankin I. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. New York: Elsevier, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133