全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钻井液侵入海洋含水合物地层的一维数值模拟研究

DOI: 10.6038/cjg20130121, PP. 204-218

Keywords: 天然气水合物,钻井液,侵入,水合物分解,二次水合物,井壁稳定,测井

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以墨西哥湾水合物区域为背景,利用数值模拟方法研究了过平衡钻井条件下,当钻井液温度高于地层中水合物稳定温度时,水基钻井液侵入海洋含水合物地层的动态过程及其一般性规律.与侵入常规油气地层相比,耦合水合物分解和再形成是钻井液侵入海洋含水合物地层的主要特征.模拟结果表明,钻井液密度、温度和盐度都对侵入过程有影响.在一定条件下,钻井液密度越大,温度和含盐量越高,则钻井液侵入程度越深,热量传递越远,水合物分解程度越大.分解的水气在合适条件下又会重新形成水合物,影响了钻井液进一步侵入.而重新形成的水合物的饱和度甚至可能高于原位水合物饱和度,在井周形成一个"高饱水合物"环带.这一现象归因于钻井液侵入的驱替推挤、水合物分解的吸热以及地层传热的滞后等因素共同作用.在地层物性一定的条件下,高饱水合物环带的出现与否主要受钻井液温度和盐度控制.水合物分解以及高饱水合物环带的出现对井壁稳定和电阻率测井解释有很大影响.因此,为维护井壁稳定、确保测井准确和减少水合物储层伤害,就必须对钻井液密度、温度和滤失量进行严格控制,防止地层中的水合物大量分解.最好采用控制压力钻井(MPD)和深侧向测井方式,同时尽量选用低矿化度的含水合物动力学抑制剂的钻井液体系,采取低温快速循环方式.

References

[1]  Makogon Y F. Peculiarities a Gas-Field Development in Permafrost. Moscow: Nedra, 1966.
[2]  Paull C K, Ussler W, Borowski W S, et al. Methane-rich plumes on the Carolina continental rise-associations with gas hydrates. Geology, 1995, 23(1): 89-92.
[3]  Collett T S. A review of well-log analysis techniques used to assess gas-hydrate-bearing reservoirs. // Paull C K, Dillon W P eds. Natural Gas Hydrates, Occurrence, Distribution and Detection, Geophysical Monograph Series, vol. 124. American Geophysical Union (AGU), 2001, 189-210.
[4]  Schwalenberg K, Haeckel M, Poort J, et al. Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: Results from Opouawe Bank, Hikurangi Margin, New Zealand. Marine Geology, 2010, 272(1-4): 79-88.
[5]  Paull C K, Matsumoto R, Wallace P J, et al. Proc. ODP, Init. Repts., 164: College Station, TX (Ocean Drilling Program). 1996, doi:10.2973/odp.proc.ir.164.1996.
[6]  Tréhu A M, Bohrmann G, Rack F R, et al. Proc. ODP, Init. Repts., 204: College Station, TX (Ocean Drilling Program). 2003, doi:10.2973/odp.proc.ir.204.2003.
[7]  Ruppel C, Boswell R, Jones E. Scientific results from gulf of mexico Gas hydrates joint industry project Leg 1 drilling: Introduction and overview. Marine and Petroleum Geology, 2008, 25(9): 819-829.
[8]  Tsuji Y, Ishida H, Nakamizu M, et al. Overview of the MITI Nankai Trough wells: A milestone in the evaluation of methane hydrate resources. Resource Geology, 2004, 54(1): 3-10.
[9]  Zhang H Q, Yang S X, Wu N Y, et al. Successful and surprising results for China''s first gas hydrate drilling expedition. Fire in the Ice: Methane Hydrate Newsletter, 2007: 6-9.
[10]  Collett T S, Riedel M, Cochran J R, et al. Indian continental margin gas hydrate prospects: results of the Indian National Gas Hydrate Program (NGHP) expedition 01. // The 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada, 2008.
[11]  Yun T S, Santamarina J C, Ruppel C D. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. Journal of Geophysical Research, 2007, 112: B04106, doi: 10.1029/2006JB004484.
[12]  宁伏龙, 蒋国盛, 张凌等. 影响含天然气水合物地层井壁稳定的关键因素分析. 石油钻探技术, 2008, 36(3): 59-61. Ning F L, Jiang G S, Zhang L, et al. Analysis of key factors affecting wellbore stability in Gas hydrate formations. Petroleum Drilling Techniques (in Chinese), 2008, 36(3): 59-61.
[13]  张建华, 胡启, 刘振华. 钻井泥浆滤液侵入储集层的理计算模型. 石油学报, 1994, 15(4): 73-78. Zhang J H, Hu Q, Liu Z H. A theoretical model for mud-filtrate invasion in reservoir formations during drilling. Acta Petrolei Sinica (in Chinese), 1994, 15(4): 73-78.
[14]  Lee M W, Collett T S. Integrated analysis of well logs and seismic data to estimate gas hydrate concentrations at Keathley Canyon, Gulf of Mexico. Marine and Petroleum Geology, 2008, 25(9): 924-931.
[15]  Lee M W, Collett T S. Unique problems associated with seismic analysis of partially gas-saturated unconsolidated sediments. Marine and Petroleum Geology, 2009, 26(6): 775-781.
[16]  邓少贵, 李智强, 范宜仁等. 斜井泥浆侵入仿真及其阵列侧向测井响应数值模拟. 地球物理学报, 2010, 53(4): 994-1000. Deng S G, Li Z Q, Fan Y R, et al. Numerical simulation of mud invasion and its array laterolog response in deviated wells. Chinese J. Geophys. (in Chinese), 2010; 53(4): 994-1000.
[17]  Ebeltoft H, Yousif M, Soergard E. Hydrate control during deepwater drilling: Overview and new drilling-fluids formulations. SPE Drilling & Completion, 2001, 16(1): 19-26.
[18]  Ning F L, Jiang G S, Zhang L, et al. Analysis on Characteristics of Drilling Fluids Invading into Gas Hydrates-Bearing Formation. // Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada, 2008.
[19]  Ning F L, Wu N Y, Jiang G S, et al. The Effect of Gas Hydrates Dissociation and Drilling Fluids Invasion Upon Borehole Stability in Oceanic Gas Hydrates-Bearing Sediment. American Geophysical Union, Fall Meeting 2009. San Francisco, California, 2009.
[20]  Moridis G J, Kowalsky M B, Pruess K. TOUGH+HYDRATE v1.1 User''s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Berkeley, California: Lawrence Berkeley National Laboratory University of California, 2009.
[21]  Moridis G J, Kowalsky M B, Pruess K, et al. Depressurization-induced gas production from class 1 hydrate deposits. Spe Reservoir Evaluation & Engineering, 2007, 10(5): 458-481.
[22]  Moridis G J, Reagan M I, Kim S J, et al. Evaluation of the Gas production potential of marine hydrate deposits in the ulleung basin of the Korean East Sea. SPE Journal, 2009, 14(4): 759-781.
[23]  Li G, Moridis G J, Zhang K, et al. Evaluation of Gas production potential from marine Gas hydrate deposits in Shenhu Area of South China Sea. Energy & Fuels, 2010, 24(11): 6018-6033.
[24]  Rutqvist J, Moridis G J, Grover T, et al. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. Journal of Petroleum Science and Engineering, 2009, 67(1-2): 1-12.
[25]  Rutqvist J, Grover T, Moridis G J. Coupled Hydrologic, Thermal and Geomechanical Analysis of Well Bore Stability in Hydrate-Bearing Sediments. Offshore Technology Conference. Houston, Texas, 2008.
[26]  Zhang K, Moridis G J, Wu Y S, et al. A domain decomposition approach for large-scale simulations of flow processes in hydrate-bearing geologic media. // Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada, 2008.
[27]  Hyndman R D, Foucher J P, Yamano M, et al. Deep sea bottom-simulating-reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates. Earth and Planetary Science Letters, 1992, 109(3-4): 289-301.
[28]  Moridis G J. Numerical studies of gas production from methane hydrates. Society of Petroleum Engineers Journal, 2003, 8(4): 359-370.
[29]  陈多福, 王茂春, 徐文新等. 墨西哥湾西北陆坡天然气水合物资源评价. 海洋地质动态, 2003, 19(012): 14-17. Chen D F, Wang M C, Xu W X, et al. Assessment of resources and economic potential of gas hydrate in the northwestern Gulf of Mexico Continental Slope. Marine Geology Letters (in Chinese), 2003, 19(012): 14-17.
[30]  Xu W Y. Modeling dynamic marine gas hydrate systems. American Mineralogist, 2004, 89(8-9): 1271-1279.
[31]  Seol Y, Myshakin E. Experimental and numerical observations of hydrate reformation during depressurization in a Core-Scale reactor. Energy & Fuels, 2011, 25(3): 1099-1110.
[32]  Bilardo U, Alimonti C, Chiarabelli A, et al. Formation water saturation from drilling fluid filtrate invasion: Comparison of displacement modelling and induction well log response. Journal of Petroleum Science and Engineering, 1996, 15(2-4): 251-259.
[33]  Konno Y, Masuda Y, Takenaka T, et al. Numerical Study on Permeability Hysteresis During Hydrate Dissociation in Hot Water Injection. // Proceedings of the 6th International Conference on Gas Hydrates(ICGH 2008). Vancouver, British Columbia, Canada, 2008.
[34]  Nagihara S, Brooks J M, Bernard B B, et al. Application of marine heat flow data important in oil, gas exploration. Oil & Gas Journal, 2002, 100(27): 43-49.
[35]  Waite W F, Kneafsey T J, Winters W J, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization. Journal of Geophysical Research-Solid Earth, 2008, 113: B07102, doi:10.1029/2007JB005351.
[36]  Xu W Y, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. Journal of Geophysical Research-Solid Earth, 2006, 111: B01104, doi: 10.1029/2004JB003600.
[37]  Biot M A. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 12(2): 155-164.
[38]  Spangenberg E. Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. Journal of Geophysical Research, 2001, 106(B4): 6535-6548.
[39]  Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Transactions, 1942, 146: 54-62.
[40]  Sloan E D. Clathrate hydrate measurements: microscopic, mesoscopic, and macroscopic. The Journal of Chemical Thermodynamics, 2003, 35(1): 41-53.
[41]  Sloan E D. Fundamental principles and applications of natural gas hydrates. Nature, 2003, 426(6964): 353-359.
[42]  Moon C, Hawtin R W, Rodger P M. Nucleation and control of clathrate hydrates: insights from simulation. Faraday Discussions, 2007, 136: 367-382.
[43]  Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment. Energy & Fuels, 2005, 19(2): 459-470.
[44]  宋海斌, 江为为, 张文生等. 天然气水合物的海洋地球物理研究进展. 地球物理学进展, 2002, 17(2): 224-229. Song H, Jiang W, Zhang W S, et al. Progress on marine geophysical studies of gas hydrates. Progress in Geophysics (in Chinese), 2002, 17(2): 224-229.
[45]  Riedel M, Spence G D, Chapman N R, et al. Seismic investigations of a vent field associated with gas hydrates, offshore Vancouver Island. Journal of Geophysical Research, 2002, 107(B9): 2200, doi: 10.1029/2001JB000269.
[46]  Ryu B J, Riedel M, Kim J H, et al. Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea. Marine and Petroleum Geology, 2009, 26(8): 1483-1498.
[47]  Lee M W. Elastic velocities of partially gas-saturated unconsolidated sediments. Marine and Petroleum Geology, 2004, 21(6): 641-650.
[48]  Birchwood R, Singh R, Mese A. Estimating the In Situ Mechanical Properties of Sediments Containing Gas Hydrates. // The 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada, 2008.
[49]  Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 2007, 56(1-3): 127-135.
[50]  Ning F L, Wu N Y, Jiang G S, et al. A method to use solar energy for the production of Gas from Marine Hydrate-Bearing sediments: A case study on the Shenhu Area. Energies, 2010, 3(12): 1861-1879.
[51]  黄隆基, 石玉江. 含气储集层泥浆侵入的动力学特征及其对补偿中子和补偿密度测井响应的影响. 地球物理学报, 1998, 41(6): 856-864. Huang L J, Shi Y J. Dynamic characteristics of mud invasion and the effects on responses of compensated density and neutron logs to gas reservoir. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 1998, 41(6): 856-864.
[52]  Stone H. Probability model for estimating three-phase relative permeability. Journal of Petroleum Technology, 1970, 22(2): 214-218.
[53]  van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J, 1980, 44(5): 892-898.
[54]  Moridis G J, Seol Y, Kneafsey T J. Studies of reaction kinetics of methane hydrate dissocation in Porous Media. // The 5th International Conference on Gas Hydrate (ICGH 2005). Trondheim, Norway, 2005.
[55]  Milkov A V, Sassen R. Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope. Marine Geology, 2001, 179(1-2): 71-83.
[56]  Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope. Marine and Petroleum Geology, 2003, 20(2): 111-128.
[57]  DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits. see alos: http://www.fossil.energy.gov/news/techlines/2009/09028-DOE_Discovers_Hydrate_Deposit.html.
[58]  Sassen R, Joye S, Sweet S T, et al. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope. Organic Geochemistry, 1999, 30(7): 485-497.
[59]  Winters W J, Dallimore S R, Collett T S, et al. Physical properties of sediments from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. Geological Survey of Canada Bulletin, 1999, 544: 95-100.
[60]  Lee J Y. Physical property measurements of marine gas hydrate-bearing sediments during lab-scale test production. // 2nd Gordon Research Conference on Natural Gas Hydrate Systems. Ventura, California, U. S. A, 2012.
[61]  Moridis G J, Reagan M T. Gas Production From Oceanic Class 2 Hydrate Accumulations. Offshore Technology Conference. Houston, Texas, 2007.
[62]  Johnson A, Patil S, Dandekar A. Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Marine and Petroleum Geology, 2011, 28(2): 419-426.
[63]  Kwon T H, Cho G C, Santamarina J C. Gas hydrate dissociation in sediments: Pressure-temperature evolution. Geochemistry Geophysics Geosystems, 2008, 9: Q03019, doi: 10.1029/2007GC001920.
[64]  Rutqvist J, Moridis G J. Numerical studies on the geomechanical stability of hydrate-bearing sediments. Spe Journal, 2009, 14(2): 267-282.
[65]  Kwon T H, Song K I, Cho G C. Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: a numerical approach. Energy & Fuels, 2010, 24(10): 5493-5507.
[66]  Holtzman R, Juanes R. Crossover from fingering to fracturing in deformable disordered media. Physical Review E, 2010, 82(4): 046305, doi: 10.1103/PhysRevE.82.046305.
[67]  Holtzman R, Juanes R. Thermodynamic and hydrodynamic constraints on overpressure caused by hydrate dissociation: A pore-scale model. Geophysical Research Letters, 2011, 38: L14308, doi: 10.1029/2011GL047937.
[68]  Gabitto J, Barrufet M. Gas Hydrates Research Programs: An International Review. United States: Prairie View A & M University, 2009.
[69]  Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. Journal of Geophysical Research-Solid Earth, 2009, 114: B07102, doi: 10.1029/2008JB006237.
[70]  Collett T S, Lee M W. Reservoir characterization of marine and permafrost associated gas hydrate accumulations with downhole well logs. Annals of the New York Academy of Sciences, 2000, 912(1): 51-64.
[71]  Poupon A, Leveaux J. Evaluation of water saturation in shaly formations. The Log Analyst, 1971, 12(4).
[72]  Dai J C, Banik N, Gillespie D, et al. Exploration for gas hydrates in the deepwater, northern Gulf of Mexico: Part II. Model validation by drilling. Marine and Petroleum Geology, 2008, 25(9): 845-859.
[73]  陆敬安, 杨胜雄, 吴能友等. 南海神狐海域天然气水合物地球物理测井评价. 现代地质, 2008, 22(3): 447-451. Lu J A, Yang S X, Wu N Y, et al. Well logging evaluation of Gas hydrates in Shenhu Area, South China Sea. Geoscience (in Chinese), 2008, 22(3): 447-451.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133