全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中地壳断层带内微裂隙愈合与高压流体形成条件的模拟实验研究

DOI: 10.6038/cjg20130110, PP. 91-105

Keywords: 中地壳断层带,汶川MS8.0级地震,高压流体,熔融盐固体介质三轴实验设备,裂隙愈合,动态重结晶作用,傅里叶变换红外光谱仪(FTIR)

Full-Text   Cite this paper   Add to My Lib

Abstract:

中地壳断层带内发现的接近静岩压力的高压流体能够合理解释汶川MS8.0级地震断层的高角度逆冲滑动,而高压流体的产生与断层带的微裂隙愈合紧密相关.利用熔融盐固体介质三轴高温高压实验系统,我们采用含水和烘干的Carrara大理岩样品开展了微裂隙愈合实验,研究中地壳断层带内高压流体的形成条件.实验分为三类:A类、A+B类和A+B+C类,其中A阶段实验在室温条件下将样品压裂,形成一系列共轭破裂面,B阶段实验在600℃、围压700MPa和应变速率10-6s-1条件下愈合了A阶段破碎的样品,实验样品从以碎裂变形为主向以韧性变形为主转变,C阶段实验通过快速降低轴压模拟一个扩容过程,再以相同实验条件重新加载样品,通过比较实验样品强度来检验样品的愈合程度.样品显微结构和实验样品强度表明,动态重结晶作用能够愈合微裂隙和孔隙,水能促进矿物的动态重结晶作用,较高的水含量和较大的应变有利于微裂隙和孔隙的愈合,从而有利于高压流体的形成.

References

[1]  Yanagisawa N, Fujimoto K, Nakashima S, et al. Micro FT-IR study of the hydration-layer during dissolution of silica glass. Geochimica et Cosmochim Acta, 1997, 61(6): 1165-1170.
[2]  Suzuki S, Nakashima S. In-situ IR measurements of OH species in quartz at high temperatures. Physics Chemistry Minerals, 1999, 26(3): 217-225.
[3]  Ito Y, Nakashima S. Water distribution in low-grade siliceous metamorphic rocks by micro-FTIR and its relation to grain size: A case from the Kanto Mountain region, Japan. Chemical Geology, 2002, 189(1-2): 1-18.
[4]  Rybacki E, Gottschalk M, Wirth R, et al. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. Journal of Geophysical Research, 2006, 111: B03203.
[5]  Zhang X M, Spiers C J. Compaction of granular calcite by pressure solution at room temperature and effects of pore fluid chemistry. Int. J. Rock Mech. Min. Sci., 2005, 42(7-8): 950-960, doi: 10.1016/j.ijrmms.2005.05.017.
[6]  熊绍柏, 滕吉文, 尹周勋等. 攀西构造带南部地壳与上地幔结构的爆炸地震研究. 地球物理学报, 1986, 29(3): 235-244. Xiong S B, Teng J W, Yin Z X, et al. Explosion seismological study of the structure of the crust and upper mantle at southern part of the Panxi tectonic belt. Chinese J. Geophys. (in Chinese), 1986, 29(3): 235-244.
[7]  王椿镛, 吴建平, 楼海等. 川西藏东地区的地壳P波速度结构. 中国科学 (D 辑), 2003, 33(增刊): 181-189. Wang C Y, Wu J P, Lou H, et al. P-wave crustal velocity structure in western Sichuan and eastern Tibetan region. Science in China (Series D),2003,46(S2):254-265.
[8]  刘静, 张智慧, 文力等. 汶川8级大地震同震破裂的特殊性及构造意义——多条平行断裂同时活动的反序型逆冲地震事件. 地质学报, 2008, 82(12): 1707-1722. Liu J, Zhang Z H, Wen L, et al. The MS8.0 Wenchuan earthquake co-seismic rupture and its tectonic implications——an out-of-sequence thrusting event with slip partitioned on multiple faults. Acta Geologica Sinica (in Chinese), 2008, 82(12): 1707-1722.
[9]  陈桂华, 徐锡伟, 郑荣章等. 2008年汶川MS8.0地震地表破裂变形定量分析——北川-映秀断裂地表破裂带. 地震地质, 2008, 30(3): 723-738. Chen G H, Xu X W, Zheng R Z, et al. Quantitative analysis of the co-seismic surface rupture of the 2008 Wenchuan earthquake, Sichuan, China along the Beichuan-Yingxiu fault. Seismology and Geology (in Chinese), 2008, 30(3): 723-738.
[10]  付碧宏, 王萍, 孔屏等. 四川汶川5.12大地震同震滑动断层泥的发现及构造意义. 岩石学报, 2008, 24(10): 2237-2243. Fu B H, Wang P, Kong P, et al. Preliminary study of coseismic fault gouge occurred in the slip zone of the Wenchuan Ms8.0 earthquake and its tectonic implication. Acta Petrologica Sinica (in Chinese), 2008, 24(10): 2237-2243.
[11]  何宏林, 孙昭民, 王世元等. 汶川MS8.0地震地表破裂带. 地震地质, 2008, 30(2): 359-362. He H L, Sun Z M, Wang S Y, et al.Rupture of the MS8.0 Wenchuan Earthquake. Seismology and Geology (in Chinese), 2008, 30(2): 359-362.
[12]  Sibson R H, Robert F, Poulsen K H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 1988, 16(6): 551-555.
[13]  Küster M, Stockhert B. High differential stress and sublithostatic pore fluid pressure in the ductile regime-microstructural evidence for short-term post-seismic creep in the Sesia Zone, Western Alps. Tectonophysics, 1999, 303(1-4), 263-277.
[14]  Yonkee W A, Parry W T, Bruhn R L. Relations between progressive deformation and fluid-rock interaction during shear-zone growth in a basement-cored thrust sheet, Sevier orogenic belt, Utah. American Journal Science, 2003, 303(1): 1-59.
[15]  Han L, Zhou Y S, He C R. The fluid character of deformed granite and sublithostatic fluid pressure in the ductile shear zone along Wenchuan Earthquake Fault (Abstract). AOGS2011 conference in Tapei. 2011, SE83-A016.
[16]  Wintsch R P, Kvale C M, Kisch H J. Open-system, constant-volume development of slaty cleavage, and strain induced replacement reactions in the Martinsburg Formation, Lehigh Gap, Pennsylvania. Geological Society of America Bulletin, 1991, 103(7): 916-927.
[17]  Wintsch R P, Yi K. Dissolution and replacement creep: a significant deformation mechanism in mid-crustal rocks. Journal Structural Geology, 2002, 24(6-7): 1179-1193.
[18]  Gratier J P, Favreau P, Renard F, et al. Fluid pressure evolution during the earthquake cycle controlled by fluid flow and pressure solution crack sealing. Earth Planets Space, 2002, 54(11): 1139-1146.
[19]  Gratier J P, Favreau P, Renard F. Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes. Journal Geophysical Resesrch, 2003, 108(B2): 2104, doi: 10.1029/2001JB000380.
[20]  Trepmann C A, Stockhert B, Dorner D, et al. Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation – an experimental study. Tectonophysics, 2007, 442(1-4): 83-104.
[21]  韩亮, 周永胜, 党嘉祥等. 3GPa熔融盐固体介质高温高压三轴压力容器的温度标定. 高压物理学报, 2009, 25(6): 407-415. Han L, Zhou Y S, Dang J X, et al. Temperature calibration for 3 GPa molten salt medium triaxial pressure vessel. Chinese Journal of High Pressure Physics (in Chinese), 2009, 25(6): 407-415.
[22]  韩亮, 周永胜, 何昌荣等. 3GPa熔融盐固体介质高温高压三轴压力容器的围压标定. 高压物理学报, 2011, 25(3): 213-220. Han L, Zhou Y S, He C R, et al. Confined pressure calibration for 3 GPa molten salt medium triaxial pressure vessel under high pressure and temperature. Chinese Journal of High Pressure Physics (in Chinese), 2011, 25(3): 213-220.
[23]  Grater J P, Gueydan F. Deformation in the Presence of fluids and mineral reactions: Effect of fracturing and fluid-rocks interaction on seismic cycle. // Handy M R, Hirth G, Hovius N eds. Tectonic Fault: Agents of Change on a Dynamic Earth. Cambridge: The MIT Press, 2007: 319-356.
[24]  Rybacki E, Renner J, Konrad K, et al. A servohydraulically-controlled deformation apparatus for rock deformation under conditions of ultra-high pressure metamorphism. Pure and Applied Geophysics, 1998, 152(3): 579-606.
[25]  Rossman G R. Studies of OH in nominally anhydrous minerals. Physics and Chemistry Minerals, 1996, 23(4-5): 299-304.
[26]  Bell D R, Rossman G R. Water in earth’s mantle: the role of nominally anhydrous minerals. Science, 1992, 255(5050): 1391-1397.
[27]  Yamagishi H, Nakashima S, Ito Y. High temperature infrared spectra of hydrous microcrystalline quartz. Physics and Chemistry of Minerals, 1997, 24(1): 66-74.
[28]  刘顺, 刘树根, 宋春彦等. 龙门山中央断裂运动学研究. 成都理工大学学报 (自然科学版), 2008, 35(4): 463-470. Liu S, Liu S G, Song C Y, et al. A study on the kinematics of the Longmen central fault in Sichuan,China. Journal of Chengdu University of Technology (Science and Technology Edition) (in Chinese), 2008, 35(4): 463-470.
[29]  胡新伟, 王道永. 映秀断裂带构造岩, 显微构造及组构特征和形成机制讨论. 成都理工学院学报, 1995, 22(4): 54-59. Hu X W, Wang D Y. Characteristics of tectonite, microstructure and fabric and formation mechanism of Yingxiu fault zone in the middle Longmen mountains. Journal of Chengdu University of Technology (in Chinese), 1995, 22(4): 54-59.
[30]  徐锡伟, 闻学泽, 叶建青等. 汶川MS8.0地震地表破裂带及其发震构造. 地震地质, 2008, 30(3): 597-629. Xu X W, Wen X Z, Ye J Q, et al. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 2008, 30(3): 597-629.
[31]  李海兵, 王宗秀, 付小方等. 2008年5月12日汶川地震(MS8.0) 地表破裂带的分布特征. 中国地质, 2008, 35(5): 803-813. Li H B, Wang Z X, Fu X F, et al. The surface rupture zone distribution of the Wenchuan earthquake (MS8.0) happened on May 12th, 2008. Geology in China (in Chinese), 2008, 35(5): 803-813.
[32]  李细光, 于贵华, 徐锡伟. 汶川MS8.0地震基岩中的地表破裂. 地震地质, 2008, 30(4): 989-995. Li S G, Yu G H, Xu X W. Surface ruptures in bedrock of the MS8.0 Wenchuan earthquake. Seismology and Geology (in Chinese), 2008, 30(4): 989-995.
[33]  李传友, 魏占玉. 2008年汶川MS8.0地震北川以北段地表破裂变形的主要样式. 第四纪研究, 2009, 29(3): 416-425. Li C Y, Wei Z Y. Representative patterns of coseismic deformation along surface rupture north to Beichuan city of 2008 Wenchuan Ms8.0 earthquake. Quaternary Sciences, 2009, 29(3): 416-425.
[34]  Xu X W, Wen X Z, Yu G H. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw7.9 Wenchuan earthquake, China. Geology, 2009, 37(6): 515-518.
[35]  陈云泰, 许力生, 张勇等. 2008年5月12日汶川特大地震震源特性分析报告. 2008, http://www.csi.ac.cn/sichuan/chenyuntai.pdf. Chen Y T, Xu L S, Zhang Y, et al. Report of main-shock source character of Wenchuan strong earthquake happened at 05-12-2008. 2008, http://www.csi.ac.cn /sichuan/chenyuntai.pdf.
[36]  张瑞青, 吴庆举, 李永华等. 汶川中强余震震源深度的确定及其意义. 中国科学 D辑: 地球科学, 2008, 38(10): 1234-1241. Zhang R Q, Wu Q J, Li Y H, et al. Focal depths for moderate-sized aftershocks of the Wenchuan MS8.0 earthquake and their implications. Science China Earth Sciences, 2008, 51(12): 1694-1702,doi:10.1007/s11430-008-0140-2.
[37]  朱艾澜, 徐锡伟, 刁桂苓等, 汶川Ms8.0地震部分余震重新定位及地震构造初步分析. 地震地质, 2008, 30(3): 759-767. Zhu A L, Xu X W, Diao G L, et al. Relocation of the Ms8.0 Wenchuan earthquake sequence in part: preliminary seismotectonic analysis. Seismology and Geology (in Chinese), 2008, 30(3): 759-767.
[38]  黄媛, 吴建平, 张天中等, 汶川8.0级大地震及其余震序列重定位研究. 中国科学 D辑: 地球科学, 2008, 38(10): 1242 -1249. Huang Y, Wu J P,Zhang T Z, et al. Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence. Science China Earth Sciences, 2008, 51(12): 1703-1711.doi:10.1007/s11430-008-0135-z.
[39]  吕坚, 苏金蓉, 靳玉科等, 汶川8.0级地震序列重新定位及其发震构造初探. 地震地质, 2008, 30(4): 917-925. Lü J, Su J R, Jin Y K, et al. Discussion on relocation and seismo-tectonics of the Ms8.0 Wenchuan earthquake sequences. Seismology and Geology (in Chinese), 2008, 30(4): 917-925.
[40]  陈九辉, 刘启元, 李顺成等, 汶川Ms8.0地震余震序列重新定位及其地震构造研究. 地球物理学报, 2009, 52(2): 390-397. Chen J H, Liu Q Y, Li S C, et al. Seismotectonic study by relocation of the Wenchuan Ms8.0 earthquake sequence. Chinese J. Geophys. (in Chinese), 2009, 52(2): 390-397.
[41]  周永胜, 何昌荣. 汶川地震区的流变结构与发震高角度逆断层滑动的力学条件. 地球物理学报, 2009, 52(2): 474-484. Zhou Y S, He C R. The rheological structures of crust and mechanics of high-angle reverse fault slip for Wenchuan Ms8.0 earthquake. Chinese J. Geophys. (in Chinese), 2009, 52(2): 474-484.
[42]  Xu Z Q, Ji S C, Li H B, et al. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes, 2008, 31(3): 291-301.
[43]  嵇少丞, 王茜, 孙圣思等. 亚洲大陆逃逸构造与现今中国地震活动. 地质学报, 2008, 82(12): 1643-1667. Ji S C, Wang Q, Sun S S, et al. Continental extrusion and seismicity in China. Acta Geologica Sinica (in Chinese), 2008, 82(12): 1643-1667.
[44]  Aines R D, Kirby S H, Rossman G R. Hydrogen speciation in synthetic quartz. Physics and Chemistry Minerals, 1984, 11(5): 204-212.
[45]  Aines R D, Rossman G R. Water in minerals? A peak in the infrared. Journal Geophysical Research, 1984, 89(B6): 4059-4071.
[46]  Skogby H, Bell D R, Rossman G R. Hydroxide in pyroxene: variations in the natural environment. Am. Mineral., 1990, 75(7-8): 764-774.
[47]  Skogby H, Rossman G R. OH (super -) in pyroxene: an experimental study of incorporation mechanisms and stability. Am. Minera.l, 1989, 74(9-10): 1059-1069.
[48]  Bell D R, Ihinger P D, Rossman G R. Quantitative analysis of trace OH in garnet and pyroxenes. Am. Mineral., 1995, 80(5-6): 465-474.
[49]  Bell D R, Rossman G R, Maldener J, et al. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. Journal of Geophysical Research, 2003, 108, doi: 10.1029/2001JB000679.
[50]  Bell D R, Rossman G R, Moore R O. Abundance and partitioning of OH in a high-pressure magmatic system: megacrysts from the Monastery Kimberlite, South Africa. Journal of Petrology, 2004, 45(8): 1539-1564.
[51]  Beran A. A model of water allocation in alkali feldspar, derived from infrared spectroscopic investigations. Physics and Chemistry Minerals, 1986, 13(5): 306-310.
[52]  Beran A. OH groups in nominally anhydrous framework structures: An infrared spectroscopic investigation of danburite and labradorite. Physics Chemistry Minerals, 1987, 14(5): 441-445.
[53]  Johnson E A, Rossman G R. A Survey of hydrous species and concentrations in igneous feldspars. Am. Mineral., 2004, 89(4): 586-600.
[54]  Johnson E A, Rossman G R. The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am. Mineral., 2003, 88(5-6): 901-911
[55]  Libowitzky E, Beran A. IR spectroscopic characterization of hydrous species in minerals. // Beran A, Libowitzky E. Spectroscopic methods in mineralogy. EMU Notes in Mineralogy, 2004, 6: 227-279.
[56]  Nakashima S, Matayoshi H, Yuko T, et al. Infrared microspectroscopy analysis of water distribution in deformed and metamorphosed rocks. Tectonophysics, 1995, 245(3-4): 263-276.
[57]  De Meer S, Spiers C J, Nakashima S. Structure and diffusive properties of fluid-filled grain boundaries: An in-situ study using infrared (micro) spectroscopy. Earth and Planetary Science Letters, 2005, 232(3-4): 403-414.
[58]  Paterson M S. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin de Minéralogie, 1982, 105: 20-29.
[59]  Whitmeyer S J, Wintsch R P. Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone, central Argentina. J. Meta. Geology., 2005, 23(6): 411-424.
[60]  Brantley S L, Evans B, Hickman S H, et al. Healing of microcracks in quartz: Implications for fluid flow. Geology, 1990, 18(2): 136-139.
[61]  Moore J C, Saffer D. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 2001, 29(2): 183-186.
[62]  Trepmann C A, Stockhert B. Mechanical twinning of jadeite-an indication of synseismic loading beneath the brittle-plastic transition. International Journal of Earth Sciences, 2001, 90(1): 4-13.
[63]  Trepmann C A, Stockhert B. Cataclastic deformation of garnet: A record of synseismic loading and postseismic creep. Journal of Structural Geology, 2002, 24(11): 1845-1856.
[64]  Trepmann C A, Stockhert B. Quartz microstructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate. Journal of Structural Geology, 2003, 25(12): 2035-2051.
[65]  Ellis S, Stckhert B. Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust. Journal of Geophysical Research, 2004, 109, B05407, doi: 10.1029/2003JB002744.
[66]  Ellis S, Stockhert B. Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust. Journal of Geophysical Research, 2004, 109: B05407, doi: 10.1029/2003JB002744.
[67]  Ellis S, Stockhert B. Imposed strain localization in the lower crust on seismic timescales. Earth, Planets and Space, 2004, 56(12): 1103-11029.
[68]  Zhang X D, Salemans J, Peach C J, et al. Compaction experiments on wet calcite powder at room temperature: Evidence for operation of intergranular pressure solution. // De Meer S, Drury M R, de Bresser J H P, et al. Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc. Spec. Publ., 2002, 200: 29-39.
[69]  Zhang X M, Spiers C J. Effects of phosphate ions on intergranular pressure solution in calcite: An experimental study. Geochim. Cosmochim. Acta, 2005, 69(24): 5681-5691, doi: 10.1016/j.gca.2005.08.006.
[70]  Zhang X M, Spiers C J, Peach C J. Compaction creep of wet granular calcite by pressure solution at 28℃ to 150℃. Journal of Geophysical Research, 2010, 115: B09217, doi: 10.1029/2008JB005835.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133