全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于保辛算法的声波叠前逆时偏移

DOI: 10.6038/cjg20141227, PP. 4157-4170

Keywords: 逆时偏移,辛算法,近似解析离散,数值频散

Full-Text   Cite this paper   Add to My Lib

Abstract:

叠前逆时偏移是目前成像精度最高的地震偏移方法之一,其实现过程中的一个重要步骤是数值求解全波方程,所以快速有效求解全波方程的数值算法对逆时偏移至关重要.四阶近似解析辛可分Runge-Kutta(NSPRK)方法是近年发展的一种具有高效率、高精度的数值求解波动方程的保辛差分方法,能在粗网格条件下有效压制数值频散,从而提高计算效率,节省计算机内存需求量.本文利用四阶NSPRK方法构造的基本思想,发展了具有六阶空间精度的NSPRK方法,并对新的六阶NSPRK方法进行了详细的稳定性和数值频散分析,以及计算效率比较和波场模拟.同时将该方法用于声波叠前逆时偏移中,得到一种时间上保辛、空间具有六阶精度、低数值频散、可应用大步长进行波场延拓并能长时计算的叠前逆时偏移方法,对Sigsbee2B模型进行了偏移成像,并和四阶NSPRK方法、传统的六阶差分方法、四阶Lax-Wendroffcorrection(LWC)方法进行了对比.数值结果表明,基于六阶NSPRK方法的叠前逆时偏移能得到更好的成像结果,是一种优于四阶NSPRK方法、传统的六阶差分方法、四阶LWC叠前逆时偏移的方法,尤其是在粗网格情况下具有更明显的优越性.

References

[1]  Baysal E, Kosloff D D, Sherwood J W C. 1983. Reverse time migration. Geophysics, 48(11): 1514-1524, doi: 10.1190/1.1441434.
[2]  Chang W F, McMechan G A. 1987. Elastic reverse-time migration. Geophysics, 52(10): 1365-1375, doi: 10.1190/1.1442249.
[3]  Chang W F, McMechan G A. 1990. 3D acoustic prestack reverse-time migration. Geophysical Prospecting, 38(7): 737-755, doi: 10.1111/j.1365-2478.1990.tb01872.x.
[4]  Chang W F, McMeehan G A. 1994. 3-D elastic prestack, reverse-time depth migration. Geophysics, 59(4): 597-609, doi: 10.1190/1.1443620.
[5]  Chattopadhyay S, McMeehan G A. 2008. Imaging conditions for prestack reverse-time migration. Geophysics, 73(3): S81-S89, doi: 10.1190/1.2903822.
[6]  Dablain M A. 1986. The application of high-order differencing to the scalar wave equation. Geophysics, 51(1): 54-66, doi: 10.1190/1.1442040.
[7]  Di Q Y, Wang M Y. 1997. The study of finite element reverse-time migration for elastic wave. Chinese J. Geophys. (in Chinese), 40(4): 570-579.
[8]  Du Q Z, Qin T. 2009. Multicomponent prestack reverse-time migration of elastic waves in transverse isotropic medium. Chinese J. Geophys. (in Chinese), 52(3): 801-807.
[9]  Duveneck E, Bakker P M. 2011. Stable P-wave modeling for reverse-time migration in tilted TI media. Geophysics, 76(2): S65-S75, doi: 10.1190/1.3533964.
[10]  Feng K, Qin M Z. 2003. Symplectic Geometric Algorithms for Hamiltonian Systems (in Chinese). Hangzhou: Zhejiang Science &Technology Press, 185-206, 271-278.
[11]  Komatitsch D, Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 154(1): 146-153, doi: 10.1046/j. 1365-246X. 2003.01950.x.
[12]  Kondoh Y, Hosaka Y, Ishii K. 1994. Kernel optimum nearly-analytical discretization (KOND) algorithm applied to parabolic and hyperbolic equations. Computers & Mathematics with Applications, 27(3): 59-90, doi: 10.1016/0898-1221(94)90047-7.
[13]  Li X F, Wang W S, Lu M W, et al. 2012. Structure-preserving modelling of elastic waves: a symplectic discrete singular convolution differentiator method. Geophysical Journal International, 188(3): 1382-1392, doi: 10.1111/j.1365-246X.2011.05344.x.
[14]  Li Y Q, Li X F, Zhu T. 2011. The seismic scalar wave field modeling by symplectic scheme and singular kernel convolutional differentiator. Chinese J. Geophys. (in Chinese), 54(7): 1827-1834, doi: 10.3969/j.issn.0001-5733.2011.07.016.
[15]  Liu H W, Li B, Liu H, et al. 2010. The algorithm of high order finite difference pre-stack reverse time migration and GPU implementation. Chinese J. Geophys. (in Chinese), 53(7): 1725-1733, doi: 10.3969/j.issn.0001-5733.2010.07.024.
[16]  Liu Y K, Chang X, Jin D G, et al. 2011. Reverse time migration of multiples for subsalt imaging. Geophysics, 76(5): WB209-WB216, doi: 10.1190/geo2010-0312.1.
[17]  Ma X, Yang D H, Zhang J H. 2010. Symplectic partitioned Runge-Kutta method for solving the acoustic wave equation. Chinese J. Geophys. (in Chinese), 53(8): 1993-2003, doi: 10.3969/j.issn.0001-5733.2010.08.026.
[18]  Yan H Y, Liu Y. 2013. Acoustic prestack reverse time migration using the adaptive high-order finite-difference method in time-space domain. Chinese J. Geophys. (in Chinese), 56(3): 971-984, doi: 10.6038/cjg20130325.
[19]  Yang D H, Teng J W, Zhang Z J, et al. 2003. A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bulletin of the Seismological Society of America, 93(2): 882-890, doi: 10.1785/0120020125.
[20]  Yang D H, Peng J M, Lu M, et al. 2006. Optimal nearly analytic discrete approximation to the scalar wave equation. Bulletin of the Seismological Society of America, 96(3): 1114-1130, doi: 10.1785/0120050080.
[21]  Yang D H, Song G J, Lu M. 2007a. Optimally accurate nearly analytic discrete scheme for wave-field simulation in 3D anisotropic media. Bulletin of the Seismological Society of America, 97(5): 1557-1569, doi: 10.1785/0120060209.
[22]  Yang D H, Song G J, Chen S, et al. 2007b. An improved nearly analytical discrete method: an efficient tool to simulate the seismic response of 2-D porous structures. Journal of Geophysics and Engineering, 4(1): 40-52, doi: 10.1088/1742-2132/4/1/006.
[23]  Yang D H, Wang N, Chen S, et al. 2009. An explicit method based on the implicit Runge-Kutta algorithm for solving wave equations. Bulletin of the Seismological Society of America, 99(6): 3340-3354, doi: 10.1785/0120080346.
[24]  Zhang J H, Yao Z X. 2013. Optimized finite-difference operator for broadband seismic wave modeling. Geophysics, 78(1): A13-A18, doi: 10.1190/GEO2012-0277.1.
[25]  Zhang Y, Sun J. 2009. Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic source encoding. First Break, 26: 29-35.
[26]  Zhang Y, Zhang H Z, Zhang G Q. 2011. A stable TTI reverse time migration and its implementation. Geophysics, 76(3): WA3-WA11, doi: 10.1190/1.3533964.
[27]  Chang W F, McMechan G A. 1986. Reverse-time migration of offset vertical seismic profiling data using the excitation time imaging condition. Geophysics, 51(1): 67-84, doi: 10.1190/1.1442041.
[28]  Li X F, Li Y Q, Zhang M G, et al. 2011. Scalar seismic-wave equation modeling by a multisymplectic discrete singular convolution differentiator method. Bulletin of the Seismological Society of America, 101(4): 1710-1718, doi: 10.1785/0120100266.
[29]  Liu Y. 2013. Globally optimal finite-difference schemes based on least squares. Geophysics, 78(4): T113-T132, doi: 10.1190/GEO2012-0480.1.
[30]  McMechan G A. 1983. Migration by extrapolation of time-dependent boundary values. Geophysical Prospecting, 31(3): 413-420, doi: 10.1111/j.1365-2478.1983.tb01060.x.
[31]  Moczo P, Kristek J, Halada L. 2000. 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion. Bulletin of the Seismological Society of America, 90(3): 587-603, doi: 10.1785/0119990119.
[32]  Sun G. 1997. A class of explicitly symplectic schemes for wave equations. Mathematica Numerica Sinica (in Chinese), (1): 1-10.
[33]  Wang L, Yang D H, Deng X Y. 2009. A WNAD method for seismic stress-field modeling in heterogeneous media. Chinese J. Geophys. (in Chinese), 52(6): 1126-1535, doi: 10.3969/j.issn.0001-5733.2009.06.014.
[34]  Whitmore N D. 1983. Iterative depth migration by backward time propagation. // The 53rd SEG Annual meeting Expanded Abstracts. SEG-1983-0382. Las Vegas, Nevada.
[35]  Wu W J, Lines L R, Lu H X. 1996. Analysis of higher-order, finite-difference schemes in 3-D reverse-time migration. Geophysics, 61(3): 845-856, doi: 10.1190/1.1444009.
[36]  Xu K, Zhou B, McMechan G A. 2010. Implementation of prestack reverse time migration using frequency-domain extrapolation. Geophysics, 75(2): S61-S72, doi: 10.1190/1.3339386.
[37]  Yang D H, Tong P, Deng X Y. 2012. A central difference method with low numerical dispersion for solving the scalar wave equation. Geophysical Prospecting, 60(5): 885-905, doi: 10.1111/j.1365-2478.2011.01033.x.
[38]  Yoon K, Shin C, Suh S, et al. 2003. 3D reverse time migration using the acoustic wave equation: An experience with the SEG/EAGE data set. The Leading Edge, 22(1): 38-41, doi: 10.1190/1.1542754.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133