全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于弹性阻抗的储层物性参数预测方法

DOI: 10.6038/cjg20141224, PP. 4132-4140

Keywords: 弹性阻抗,储层物性参数,贝叶斯理论,EM算法,统计性岩石物理模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

储层物性参数是储层描述的重要参数,常规的基于贝叶斯理论的储层物性参数反演方法大多是通过反演获得的弹性参数进一步转换而获得物性参数,本文提出一种基于弹性阻抗数据预测储层物性参数的反演方法.该方法主要通过建立可以表征弹性阻抗与储层物性参数之间关系的统计岩石物理模型,联合蒙特卡罗仿真模拟技术,在贝叶斯理论框架的指导下,应用期望最大化算法估计物性参数的后验概率分布,最终实现储层物性参数反演.经过模型测试和实际资料的处理,其结果表明本文提出的方法具有预测精度高,稳定性强,横向连续性好等优点.

References

[1]  Bachrach R. 2006. Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics, 71(5): O53-O63.
[2]  Bosch M, Carvajal C, Rodrigues J, et al. 2009. Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir. Geophysics, 74(2): O1-O15.
[3]  Bosch M, Mukerji T, Gonzalez E F. 2010. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics, 75(5): 75A165-75A166.
[4]  Dong E Q, Gao H L. 1998. Wave impedance constrain inversion and calculation method of reservoir petrophysical parameters. Well Logging Technology (in Chinese), 22(5): 337-340.
[5]  Doyen P M. 1988. Porosity from seismic data: A geostatistical approach. Geophysics, 53(10): 1263-1275.
[6]  Eidsvik J, Avseth P, Omre H, et al. 2004. Stochastic reservoir characterization using prestack seismic data. Geophysics, 69(4): 978-993. Gallop J. 2006. Facies probability from mixture distributions with non-stationary impedance errors. 2006 SEG Annual Meeting.
[7]  Han M, Zhao Y, Li G M, et al. 2011. Application of EM algorithms for seismic facices classification. Computational Geosciences, 15(3): 421-429.
[8]  Hu H F, Yin X Y, Wu G C. 2012. Joint inversion of petrophysical parameters based on Bayesian classification. Geophysical Prospecting for Petroleum (in Chinese), 51(3): 225-232.
[9]  Ulvmoen M, Omre H. 2010. Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1—Methodology. Geophysics, 75(2): R21-R35.
[10]  Yin X Y, Wu G C, Zhang H Z. 1994. The application of neural networks in the reservior prediction. Journal of the University of Petroleum (in Chinese), 18(5): 20-26.
[11]  Yin X Y, Yang F L, Wu G C. 1998. Application of neural network to predicting reservoir and calculating thickness in CB oilfield. Journal of the University of Petroleum (in Chinese), 22(2): 17-20.
[12]  Buland A, Kolbjrnsen O, Hauge R, et al. 2008. Bayesian lithology and fluid prediction from seismic prestack data. Geophysics, 73(3): C13-C21.
[13]  Connolly P. 1999. Elastic impedance. The Leading Edge, 18(4): 438-452.
[14]  Grana D, Rossa E D. 2010. Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics, 75(3): O21-O37.
[15]  Larsen A L, Ulvmoen M, Omre H, et al. 2006. Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model. Geophysics, 71(5): R69-R78.
[16]  McCormack M D. 1991. Neural computing in geophysics. The Leading Edge, 10(1): 11-15.
[17]  Mukerji T, Avseth P, Mavko G, et al. 2001a. Statistical rock physics: Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization. The Leading Edge, 20(3): 313-319.
[18]  Mukerji T, Jrstad A, Avseth P, et al. 2001b. Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics. Geophysics, 66(4): 988-1001.
[19]  Nie J X, Yang D H, Yang H Z. 2004. Inversion of reservoir parameters based on the BISQ model in partially saturated porous media. Chinese Journal of Geophysics (in Chinese), 47(6): 1101-1105.
[20]  Rimstad K, Omre H. 2010. Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics, 75(4): R93-R108.
[21]  Spikes K, Mukerji T, Dvorkin J, et al. 2007. Probabilistic seismic inversion based on rock-physics models. Geophysics, 72(5): R87-R97.
[22]  Tian J W, Gao M J. 2002. Thin interbedded reservoir parameters predicting based on high speed and precise genetic algorithm neural network. Control and Decision (in Chinese), 17(5): 599-603.
[23]  Whitcombe D N. 2002. Elastic impedance normalization. Geophysics, 67(1): 60-62.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133