Bachrach R. 2006. Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics, 71(5): O53-O63.
[2]
Bosch M, Carvajal C, Rodrigues J, et al. 2009. Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir. Geophysics, 74(2): O1-O15.
[3]
Bosch M, Mukerji T, Gonzalez E F. 2010. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics, 75(5): 75A165-75A166.
[4]
Dong E Q, Gao H L. 1998. Wave impedance constrain inversion and calculation method of reservoir petrophysical parameters. Well Logging Technology (in Chinese), 22(5): 337-340.
[5]
Doyen P M. 1988. Porosity from seismic data: A geostatistical approach. Geophysics, 53(10): 1263-1275.
[6]
Eidsvik J, Avseth P, Omre H, et al. 2004. Stochastic reservoir characterization using prestack seismic data. Geophysics, 69(4): 978-993. Gallop J. 2006. Facies probability from mixture distributions with non-stationary impedance errors. 2006 SEG Annual Meeting.
[7]
Han M, Zhao Y, Li G M, et al. 2011. Application of EM algorithms for seismic facices classification. Computational Geosciences, 15(3): 421-429.
[8]
Hu H F, Yin X Y, Wu G C. 2012. Joint inversion of petrophysical parameters based on Bayesian classification. Geophysical Prospecting for Petroleum (in Chinese), 51(3): 225-232.
[9]
Ulvmoen M, Omre H. 2010. Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1—Methodology. Geophysics, 75(2): R21-R35.
[10]
Yin X Y, Wu G C, Zhang H Z. 1994. The application of neural networks in the reservior prediction. Journal of the University of Petroleum (in Chinese), 18(5): 20-26.
[11]
Yin X Y, Yang F L, Wu G C. 1998. Application of neural network to predicting reservoir and calculating thickness in CB oilfield. Journal of the University of Petroleum (in Chinese), 22(2): 17-20.
[12]
Buland A, Kolbjrnsen O, Hauge R, et al. 2008. Bayesian lithology and fluid prediction from seismic prestack data. Geophysics, 73(3): C13-C21.
[13]
Connolly P. 1999. Elastic impedance. The Leading Edge, 18(4): 438-452.
[14]
Grana D, Rossa E D. 2010. Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics, 75(3): O21-O37.
[15]
Larsen A L, Ulvmoen M, Omre H, et al. 2006. Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model. Geophysics, 71(5): R69-R78.
[16]
McCormack M D. 1991. Neural computing in geophysics. The Leading Edge, 10(1): 11-15.
[17]
Mukerji T, Avseth P, Mavko G, et al. 2001a. Statistical rock physics: Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization. The Leading Edge, 20(3): 313-319.
[18]
Mukerji T, Jrstad A, Avseth P, et al. 2001b. Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics. Geophysics, 66(4): 988-1001.
[19]
Nie J X, Yang D H, Yang H Z. 2004. Inversion of reservoir parameters based on the BISQ model in partially saturated porous media. Chinese Journal of Geophysics (in Chinese), 47(6): 1101-1105.
[20]
Rimstad K, Omre H. 2010. Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics, 75(4): R93-R108.
[21]
Spikes K, Mukerji T, Dvorkin J, et al. 2007. Probabilistic seismic inversion based on rock-physics models. Geophysics, 72(5): R87-R97.
[22]
Tian J W, Gao M J. 2002. Thin interbedded reservoir parameters predicting based on high speed and precise genetic algorithm neural network. Control and Decision (in Chinese), 17(5): 599-603.
[23]
Whitcombe D N. 2002. Elastic impedance normalization. Geophysics, 67(1): 60-62.