全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

太阳风压力系数的研究

DOI: 10.6038/cjg20141134, PP. 3804-3811

Keywords: 太阳风压力系数,磁层顶日下点距离,日下点磁层顶张角,压强转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用全球磁流体力学(MHD)的模拟结果,研究了太阳风压力系数与上游太阳风参数和日下点磁层顶张角的相关性.在识别出日下点附近磁层顶位置后,通过拟合得到日下点附近的磁层顶张角.在考虑上游太阳风中的磁压和热压以及磁层顶外侧的太阳风动压的情况下,计算了太阳风压力系数.通过分析行星际磁场不同方向时太阳风动压在日地连线上与磁压和热压的转化关系,详细研究了太阳风参数和日下点磁层顶张角对太阳风压力系数的影响,得到以下相关结论:(1)在北向行星际磁场较大(Bz≥5nT)时,磁层顶外侧磁压占主导,南向行星际磁场时磁层顶外侧热压占主导;(2)太阳风压力系数随着行星际磁场的增大而增大,随着行星际磁场时钟角的增大而减小;并且在行星际磁场大小和其他太阳风条件相同时,北向行星际磁场时的太阳风压力系数要大于南向行星际磁场时的;北向行星际磁场时,太阳风压力系数随着太阳风动压的增大而减小,南向行星际磁场时,太阳风压力系数随着太阳风动压的增大而增大;以上结论是对观测结果的扩展;(3)最后,我们还发现太阳风压力系数随着日下点磁层顶张角的增大而增大.

References

[1]  Kivelson M G, Russell C T. 2001. Introduction to Space Physics (in Chinese). C J B, Translated. Beijing: Science Press, 128-130.
[2]  Lin R L, Zhang X X, Liu S Q, et al. 2010. A three-dimensional asymmetric magnetopause model. J. Geophys. Res., 115(A4): A04207, doi: 10.1029/2009JA014235.
[3]  Liu Z Q, Lu J Y, Kabin K, et al. 2012. Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations. J. Geophys. Res., 117(A7): A07207, doi: 10.1029/2011JA017441.
[4]  Lu J Y, Liu Z Q, Kabin K, et al. 2011. Three dimensional shape of the magnetopause: Global MHD results. J. Geophys. Res., 116(A9): A09237, doi: 10.1029/2010ja016418.
[5]  Lu J Y, Jing H, Liu Z Q, et al. 2013a. Energy transfer across the magnetopause for northward and southward interplanetary magnetic fields. J. Geophys. Res., 118(5), doi: 10.1002/jgra.50093.
[6]  Lu J Y, Liu Z Q, Kabin K, et al. 2013b. The IMF dependence of the magnetopause from global MHD simulations. J. Geophys. Res., 118(6): 3113-3125, doi: 10.1002/jgra.50324
[7]  Petrinec S M, Russell C T. 1996. Near-Earth magnetotail shape and size as determined from the magnetopause flaring angle. J. Geophys. Res., 101(A1): 137-152.
[8]  Schield M A. 1969. Pressure balance between solar wind and magnetosphere. Journal of Geophysical Research, Space Physics, 74(5): 1275-1286.
[9]  Shue J H, Chao J K. 2013. The role of enhanced thermal pressure in the earthward motion of the Earth''s magnetopause. J. Geophys. Res., 118(6): 3017-3026.
[10]  Shue J H, Chao J K, Fu H C, et al. 1997. A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res., 102(A5): 9497-9511, doi: 10.1029/97JA00196.
[11]  Shue J H, Song P, Russell C T, et al. 1998. Magnetopause location under extreme solar wind conditions. J. Geophys. Res., 103(A8): 17691-17700, doi: 10.1029/98JA01103.
[12]  Spreiter J R, Summers A L, Alksne A Y. 1966. Hydromagnetic flow around the magnetosphere. Planet Space Sci., 14(3): 223-253, IN1-IN2, 251-253.
[13]  Suvorova A V, Shue J H, Dmitriev A V, et al. 2010. Magnetopause expansions for quasi-radial interplanetary magnetic field: THEMIS and Geotail observations. J. Geophys. Res., 115(A10), A10216, doi: 10.1029/2010JA015404.
[14]  Chao J K, Wu D J, Lin C H, et al. 2002. Models for the size and shape of the earth''s magnetopause and bow shock. // Lyu L H. Space Weather Study Using Multipoint Techniques, COSPAR Colloquia Series, vol.12., Oxford: Pergamon, 127-134.
[15]  Fairfield D H, Baumjohann W, Paschmann G, et al. 1990. Upstream pressure variations associated with the bow shock and their effects on the magnetosphere. J. Geophys. Res., 95(A4): 3773-3786.
[16]  Jelínek K, Něme?ek Z, ?afránková J, et al. 2010. Thin magnetosheath as a consequence of the magnetopause deformation: THEMIS observations. J. Geophys. Res., 115: A10203, doi: 10.1029/2010JA015345.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133