全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于等离子体GCPM模型对电离层薄壳模型高度的仿真研究

DOI: 10.6038/cjg20141111, PP. 3577-3585

Keywords: GCPM,薄壳高度,TEC,单层模型,转换误差

Full-Text   Cite this paper   Add to My Lib

Abstract:

在基于GPS数据提取电离层总电子含量(TEC)的过程中,电离层薄壳高度的选择对解算电离层垂直TEC的精度有很大的影响.但由于不可能获得一个真实的从电离层D层到GPS卫星高度的电子密度剖面,关于电离层薄壳高度的选择一直是基于GPS数据解算电离层TEC方法中关注的一个问题.本文利用等离子体GCPM模型,对太阳活动高年(2002)和太阳活动低年(2008)情况下电离层有效薄壳高度的选择进行了仿真计算.结果表明,最佳的薄壳高度在2002年为560km,而在2008年为695km.通过对全球八个具有代表性地点的仿真计算,揭示了有效薄壳高度更复杂的变化特点.在白天,最佳薄壳的高度变化不大(500km至750km);但在夜晚,最佳薄壳高度变化范围很大,甚至可以超过2000km.此外,本文还对不同卫星仰角的情况下斜向TEC转换为垂直TEC的误差进行了分析,结果表明:随着卫星仰角的增加,薄壳模型带来的转换误差基本上是单调减少的.因而,在实际应用中,尽可能地采用大仰角的卫星数据有助于提高解算的电离层垂直TEC的精度.最后,对全球不同地点的电离层TEC的仿真研究表明,在电子密度水平梯度较大的地区,应用电离层薄壳模型时会导致电子密度较高处的TEC被高估,而电子密度较低处的TEC被低估,在分析基于GPS数据提取的电离层TEC空间变化时要认识到这一点.

References

[1]  Coco D S, Coker C, Dahlke S R, et al. 1991. Variability of GPS satellite differential group delay biases. IEEE Transactions on Aerospace and Electronic Systems, 27(6): 931-938, doi: 10.1109/7.104264.
[2]  Coster A, Williams J, Weatherwax A, et al. 2013. Accuracy of GPS total electron content: GPS receiver bias temperature dependence. Radio Science, 48(2): 190-196.
[3]  Ma G, Maruyama T. 2003. Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann. Geophys., 21(10): 2083-2093, doi: 10.5194/angeo-21-2083-2003.
[4]  Sardón E, Zarraoa N. 1997. Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases? Radio Science, 32(5): 1899-1910.
[5]  Vladimer J A, Lee M C, Doherty P H, et al. 1997. Comparisons of TOPEX and Global Positioning System total electron content measurements at equatorial anomaly latitudes. Radio Science, 32(6): 2209-2220, doi: 10.1029/97RS02277.
[6]  Wan W X, Ding F, Ren Z P, et al. 2012. Modeling the global ionospheric total electron content with empirical orthogonal function analysis. Sci. China Tech. Sci., 55(5): 1161-1168, doi: 10.1007/s11431-012-4823-8.
[7]  Xiao R, Xu J S, Ma S Y, et al. 2012. Abnormal distribution of ionospheric electron density during November 2004 super-storm by 3D CT reconstructions from IGS and LEO/GPS observations. Sci. China Tech. Sci., 55(5): 1230-1239, doi: 10.1007/s11431-012-4791-z.
[8]  Zhang D H, Xiao Z. 2000. A method of calculating TEC with GPS data and its application to the ionospheric disturbances. Chinese J. Geophys. (in Chinese), 43(4): 451-458.
[9]  Zhang D H, Zhang W, Li Q, et al. 2010. Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes. Ann. Geophys., 28: 1571-1580, doi: 10.5194/angeo-28-1571-2010.
[10]  Zhang D H, Mo X H, Ercha A, et al. 2012. Case study of ionospheric fluctuation over mid-latitude region during one large magnetic storm. Sci. China Tech. Sci., 55(5): 1198-1206, doi: 10.1007/s11431-012-4785-x.
[11]  Zhang D H, Shi H, Jin Y Q, et al. 2014. The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Sci. China Tech. Sci., 57: 67-79, doi: 10.1007/s11431-013-5419-7.
[12]  Zhang W, Zhang D H, Xiao Z. 2009. The influence of geomagnetic storms on the estimation of GPS instrumental biases. Ann. Geophys., 27: 1613-1623, doi: 10.5194/angeo-27-1613-2009.
[13]  Birch M J, Hargreaves J K, Bailey G J. 2002. On the use of an effective ionospheric height in electron content measurement by GPS reception. Radio Science, 37(1): 15-1-15-19, doi: 10.1029/2000RS002601.
[14]  Gallagher D L, Craven P D, Comfort R H. 2000. Global core plasma model. J. Geophys. Res., 105(A8): 18819-18833, doi: 10.1029/1999JA000241.
[15]  Hernández-Pajares M J, Juan M, Sanz J, et al. 2009. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod., 83(3-4): 263-275, doi 10.1007/s00190-008-0266-1.
[16]  Ho C M, Wilson B D, Mannucci A J, et al. 1997. A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model. Radio Science, 32(4): 1499-1512, doi:10.1029/97RS00580.
[17]  Lanyi G E, Roth T. 1988. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Science, 23(4): 483-492, doi: 10.1029/RS023i004p00483.
[18]  Liu J, Liu L B, Zhao B Q, et al. 2012. Empirical modeling of ionospheric F2 layer critical frequency over Wakkanai under geomagnetic quiet and disturbed conditions. Sci. China Tech. Sci., 55(5): 1169-1177, doi: 10.1007/s11431-012-4801-1.
[19]  Liu Z Z, Gao Y. 2004. Ionospheric TEC predictions over a local area GPS reference network. GPS Solutions, 8(1): 23-29, doi: 10.1007/s10291-004-0082-x.
[20]  Niranjan K, Srivani B, Gopikrishna S, et al. 2007. Spatial distribution of ionization in the equatorial and low-latitude ionosphere of the Indian sector and its effect on the pierce point altitude for GPS applications during low solar activity periods. J. Geophys. Res., 112(A5), A05304, doi: 10.1029/2006JA011989.
[21]  Otsuka Y, Ogawa T, Saito A, et al. 2001. A new technique for mapping of total electron content using GPS network in Japan. Earth, Planets and Space, 54(1): 63-70.
[22]  Rama Rao P V S, Niranjan K, Prasad D S V V D, et al. 2006. On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low-latitude sector. Ann. Geophys., 24: 2159-2168, doi: 10.5194/angeo-24-2159-2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133