Anderson D N, Buchau J, Heelis R A. 1988. Origin of density enhancements in the winter polar cap ionosphere. Radio Science, 23(4): 513-519.
[2]
Balmforth H F, Moffett R J, Rodger A S. 1999. Localized structure in the cusp and high-latitude ionosphere: a modelling study. Ann. Geophys., 17: 455-462.
[3]
Bust G S, Crowleyg G. 2007. Tracking of polar cap ionospheric patches using data assimilation. Journal of Geophysical Research: Space Physics (1978—2012), 112(A5): A05307, doi: 10.1029/2005JA011597.
[4]
Crooker N U. 1979. Dayside merging and cusp geometry. Journal of Geophysical Research: Space Physics (1978—2012), 84(A3): 951-959.
[5]
Hairston M R, Heelis R A. 1990. Model of the high-latitude ionospheric convection pattern during southward interplanetary magnetic field using DE 2 data. J. Geophys. Res., 95(A3): 2333-2343.
[6]
Liu S L, Zhang B C, Liu R Y, et al. 2005. The influence of upper boundary conditions on the polar ionosphere. Chinese J. Space Sci. (in Chinese), 25(4): 504-509.
[7]
Milan S E, Lester M, Yeoman T K. 2002. HF radar polar patch formation revisited: Summer and winter variations in dayside plasma structuring. Ann. Geophys., 20: 487-499.
[8]
Moen J, Gulbrandsen N, Lorentzen A, et al. 2007. On the MLT distribution of F region polar cap patches at night. Geophys. Res. Lett., 34(14): L14113, doi: 10.1029/2007GL029632.
[9]
Rodger A S, Pinnock M, Dudeney J R, et al. 1994. A new mechanism for polar patch formation. J. Geophys. Res., 99(A4): 6425-6436.
[10]
Sojka J J, Bowline M D, Schunk R W, et al. 1993. Modeling polar cap F-region patches using time varying convection. Geophys. Res. Lett., 20(17): 1783-1786.
[11]
Valladares C E, Decker D T, Sheehan R, et al. 1996. Modeling the formation of polar cap patches using large plasma flows. Radio Science, 31(3): 573-593.
[12]
Walker I K, Moen J, Kersley L, et al. 1999. On the possible role of cusp/cleft precipitation in the formation of polar-cap patches. Ann. Geophys., 17: 1298-1305.
[13]
Zhang B C, Kamide Y, Liu R Y, et al. 2004. A modeling study of ionospheric conductivities in the high-latitude electrojet regions. J. Geophys. Res., 109(A4), doi: 10.1029/2003JA010181.
[14]
Zhang B C, Liu R Y, Liu S L. 2001. Simulation study on the influences of the precipitating electrons on the polar ionosphere. Chinese J. Geophys. (in Chinese), 44(3): 311-319.
[15]
Zhang Q H, Zhang B C, Moen J, et al. 2013b. Polar cap patch segmentation of the tongue of ionization in the morning convection cell. Geophys. Res. Lett., 40(12): 2918-2922, doi: 10.1002/grl.50616.
[16]
Dungey J W. 1961. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2): 47-48.
[17]
Foster J C. 1993. Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research: Space Physics (1978—2012), 98(A2): 1675-1689.
[18]
Heppner J P, Maynard N C. 1987. Empirical high-latitude electric field models. J. Geophys. Res., 92(A5): 4467-4489.
[19]
Hosokawa K, Moen J I, Shiokawa K, et al. 2011. Decay of polar cap patch. J.Geophys. Res., 116(A5): A05306, doi: 10.1029/2010JA016297.
[20]
Liu J M, Zhang B C, Liu R Y, et al. 2009. Effects of the precipitation electrons on the polar ionosphere with different energy spectrum. Chinese J. Geophys. (in Chinese), 52(6): 1429-1437.
[21]
Weber E J, Buchau J, Moore J G, et al. 1984. F layer ionization patches in the polar cap. J. Geophys. Res., 89(A3): 1683-1694.
[22]
Zhang B C, Kamide Y, Liu R Y. 2003. Response of electron temperature to field-aligned current carried by thermal electrons: A model. J. Geophys. Res., 108(A5): 1169, doi: 10.1029/2002JA009532.
[23]
Zhang Q H, Zhang B C, Lockwood M, et al. 2013a. Direct observations of the evolution of polar cap ionization patches. Science, 339(6127): 1597-1600.