全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

第24太阳活动周中纬度电离层低电离水平的观测研究

DOI: 10.6038/cjg20141103, PP. 3512-3522

Keywords: 太阳活动周,电离层,子午工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

延续2008—2009年的太阳极低活动期,第24太阳活动周开始后太阳活动性上升缓慢,即使在趋近峰年时太阳极紫外(EUV)辐射通量的水平仍显著低于前几个活动周.比较第23、24周的太阳辐射水平,及日本国分寺和子午工程武汉站的电离层测高仪观测,发现第24周的太阳EUV辐射、电离层F区临界频率(foF2)和峰值高度(hmF2)都显著低于第23周的同期水平;在较低高度上,偏低的EUV辐射带来的电子密度变化不明显,而峰值电子密度(NmF2)和0.1~50nm太阳EUV辐射通量在多数时候都同步的偏低25%~50%;但是在夏季NmF2与EUV辐射的关联性较差,即NmF2的偏低在夏季较少.分析认为这与热层中性风的季节特点有关:在夏季午后,吹向极区的子午向风总是较弱,在第24周偏低的EUV辐射背景下,减弱的离子曳力使其他季节的极区向风得到增强,进一步促进了NmF2和hmF2的降低,使这一机制的效果非常显著.基于上述结论,在对第24周电离层进行预测预报时,需更多地考虑非直接电离机制的影响.总体而言,第24周的热层和电离层变化特征可能将有别于之前几个活动周的观测,并偏离人们在此基础上所形成的认识.

References

[1]  A E, Zhang D H, Xiao Z, et al. 2011. Modeling ionospheric foF2 by using empirical orthogonal function analysis. Ann. Geophys., 29: 1501-1515, doi: 10.5194/angeo-29-1501-2011.
[2]  A E, Zhang D H, Ridley A J, et al. 2012. A global model: Empirical orthogonal function analysis of total electron content 1999—2009 data. J. Geophys. Res., 117(A3): A03328, doi: 10.1029/2011JA017238.
[3]  Araujo-Pradere E A, Redmon R, Fedrizzi M, et al. 2011. Some characteristics of the ionospheric behavior during the solar cycle 23-24 minimum. Sol. Phys., 274(1-2): 439-456, doi: 10.1007/s11207-011-9728-3.
[4]  Clilverd M A, Clarke E, Ulich T, et al. 2006. Predicting solar cycle 24 and beyond. Space Weather, 4(9): S09005, doi: 10.1029/2005SW000207.
[5]  Emmert J T, Lean J L, Picone J M. 2010. Record-low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett., 37(12): L12102, doi: 10.1029/2010GL043671.
[6]  Hao Y Q, Xiao Z, Zhang D H. 2013. Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake. J. Geophys. Res., 118(6): 3914-3923, doi: 10.1002/jgra.50326.
[7]  Hao Y Q, Shi H, Xiao Z, et al. 2014. Weak ionization of the global ionosphere in solar cycle 24. Ann. Geophys., 32: 809-816, doi: 10.5194/angeo-32-809-2014.
[8]  La?tovi?ka J. 2013. Trends in the upper atmosphere and ionosphere: Recent progress. J. Geophys. Res., 118(6): 3924-3935, doi: 10.1002/jgra.50341.
[9]  Le G M, Cai Z Y, Wang H N, et al. 2012. Solar cycle distribution of great geomagnetic storms. Astrophys. Space Sci., 339(1): 151-156, doi: 10.1007/s10509-011-0960-y.
[10]  Lei J H, Thayer J P, Forbes J M, et al. 2008a. Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J. Geophys. Res., 113(A11): A11303, doi: 10.1029/2008JA013433.
[11]  Lei J H, Thayer J P, Forbes J M, et al. 2008b. Ionosphere response to solar wind high-speed streams. Geophys. Res. Lett., 35(19): L19105, doi: 10. 1029/2008GL035208.
[12]  Liu J, Liu L B, Zhao B Q, et al. 2012. Empirical modeling of ionospheric F2 layer critical frequency over Wakkanai under geomagnetic quiet and disturbed conditions. Sci. China Tech. Sci., 55(5): 1169-1177, doi: 10.1007/s11431-012-4801-1.
[13]  Liu L B, Wan W X, Luan X L, et al. 2003a. Solar activity dependence of effective winds derived from ionospheric data at Wuhan. Adv. Space Res., 32(9): 1719-1724, doi: 10.1016/S0273-1177(03)90468-6.
[14]  Liu L B, Luan X L, Wan W X, et al. 2003b. Seasonal behavior of equivalent winds over Wuhan derived from ionospheric data in 2000-2001. Adv. Space Res., 32(9): 1765-1770, doi: 10.1016/S0273-1177(03)90474-1.
[15]  Liu L B, Wan W X, Ning B Q, et al. 2006. Solar activity variations of the ionospheric peak electron density. J. Geophys. Res., 111(A8): A08304, doi: 10.1029/2006JA011598.
[16]  Liu L B, Chen Y D, Le H J, et al. 2011a. The ionosphere under extremely prolonged low solar activity. J. Geophys. Res., 116(A4): A04320, doi: 10.1029/2010JA016296.
[17]  Liu L B, Wan W X, Chen Y D, et al. 2011b. Solar activity effects of the ionosphere: A brief review. Chinese Sci. Bull., 56(12): 1202-1211, doi: 10.1007/s11434-010-4226-9.
[18]  Lockwood M, Rouillard A P, Finch I D. 2009. The rise and fall of open solar flux during the current grand solar maximum. Astrophys. J., 700(2): 937-944, doi: 10.1088/0004-637X/700/2/937.
[19]  Pesnell W D. 2012. Solar cycle predictions (Invited Review). Sol. Phys., 281(1): 507-532, doi: 10.1007/s11207-012-9997-5.
[20]  Richards P G. 2001. Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and models. J. Geophys. Res., 106(A7): 12803-12819, doi: 10.1029/2000JA000365.
[21]  Rishbeth H. 1998. How the thermospheric circulation affects the ionospheric F2-layer. J. Atmosph. Solar-Terr. Phys., 60(14): 1385-1402.
[22]  Russell C T, Luhmann J G, Jian L K. 2010. How unprecedented a solar minimum? Rev. Geophys., 48(2): RG2004, doi: 10.1029/2009RG000316.
[23]  SIDC-team, The International Sunspot Number. Monthly Report on the International Sunspot Number, online catalogue, available at: http://www.sidc.be/sunspot-data/(last access: September 2014), 1954-2014.
[24]  Solanki S K, Krivova N A. 2011. Analyzing solar cycles. Science, 334(6058): 916-917, doi: 10.1126/science.1212555.
[25]  Solomon S C, Woods T N, Didkovsky L V, et al. 2010. Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys. Res. Lett., 37(16): L16103, doi: 10.1029/2010GL044468.
[26]  Yang J, Liu L B, Chen Y D, et al. 2012. Does the equatorial ionospheric peak electron density really record the lowest during the recent deep solar minimum? Chinese J. Geophys. (in Chinese), 55(9): 2826-2834, doi: 10.6038/j.issn.0001-5733.2012.09.002.
[27]  Zhang D H, Mo X H, A E, et al. 2012. Case study of ionospheric fluctuation over mid-latitude region during one large magnetic storm. Sci. China Tech. Sci., 55(5): 1198-1206, doi: 10.1007/s11431-012-4785-x.
[28]  Hao Y Q, Xiao Z, Zhang D H. 2012. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake. J. Geophys. Res., 117(A2): A02305, doi: 10.1029/2011JA017036.
[29]  Hao Y Q, Zhang D H. 2012. Ionospheric absorption and planetary wave activity in east asia sector. Sci. China Tech. Sci., 55(5): 1264-1272, doi: 10.1007/s11431-012-4799-4.
[30]  Judge D L, McMullin D R, Ogawa H S, et al. 1998. First solar EUV irradiances obtained from SOHO by the Celias/Sem. Sol. Phys., 177(1-2): 161-173.
[31]  Kane R P. 2013. An estimate for the size of sunspot cycle 24. Sol. Phys., 282(1): 87-90, doi: 10.1007/s11207-012-0131-5.
[32]  Kawamura S, Otsuka Y, Zhang S R, et al. 2000. A climatology of middle and upper atmosphere radar observations of thermospheric winds. J. Geophys. Res., 105(A6): 12777-12788.
[33]  Owens M J, Lockwood M, Barnard L, et al. 2011. Solar cycle 24: Implications for energetic particles and long-term space climate change. Geophys. Res. Lett., 38: L19106, doi: 10.1029/2011GL049328.
[34]  Pesnell W D. 2008. Predictions of solar cycle 24. Sol. Phys., 252(1): 209-220, doi: 10.1007/s11207-008-9252-2.
[35]  Svalgaard L, Cliver E W, Kamide Y. 2005. Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett., 32(1): L01104, doi: 10. 1029/2004GL021664.
[36]  Wan W X, Ding F, Ren Z P, et al. 2012. Modeling the global ionospheric total electron content with empirical orthogonal function analysis. Sci. China Tech. Sci., 55(5): 1161-1168, doi: 10.1007/s11431-012-4823-8.
[37]  Xiao S G, Shi J K, Zhang D H, et al. 2012. Observational study of daytime ionospheric irregularities associated with typhoon. Sci. China Tech. Sci., 55(5): 1302-1304, doi: 10.1007/s11431-012-4816-7.
[38]  Xiao S G, Xiao Z, Shi J K, et al. 2009. Observational facts in revealing a close relation between acoustic-gravity waves and midlatitude spread F. J. Geophys. Res., 114(A1): A01303, doi: 10.1029/2008JA013747.
[39]  Xu W Y, Du A M. 2012. Energy budget of the magnetosphere-ionosphere system in solar cycle 23. Sci. China Tech. Sci., 55(5): 1184-1188, doi: 10.1007/s11431-012-4809-6.
[40]  Zhang S R, Fukao S, Oliver W L, et al. 1999. The height of the maximum ionospheric electron density over the MU radar. J. Atmos. Sol.-Terr. Phys., 61(18): 1367-1383.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133