全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

日本海沟俯冲带热结构与深源地震

DOI: 10.6038/cjg20141009, PP. 3208-3217

Keywords: 日本海沟俯冲带,地幔对流模式,热结构,负浮力,波速异常

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用有限差分方法,计算了全地幔对流模式和双层地幔对流模式下日本海沟俯冲带热结构、浮力及P波速度异常分布,基于亚稳态橄榄石相变模型推测亚稳态橄榄石的存在范围,同时分析了热传导系数、热膨胀系数和热源对俯冲带热结构的影响,以及俯冲带所受浮力与俯冲带形态的关系.结果表明,双层地幔对流模式下模拟的P波速度异常分布与层析成像结果更为相符,也与深源地震的分布有较好的相关性.板块内部亚稳态橄榄石的存在范围随热传导系数和热膨胀系数的减小而增大,同时忽略相变潜热和剪切生热的影响也会造成模型所预测的亚稳态橄榄石范围偏大.俯冲带所受负浮力在400km深度附近达到最大值,亚稳态橄榄石的存在使负浮力逐渐减小,甚至在板块内部产生正浮力,不利于俯冲带穿透660km相变界面.

References

[1]  Bina C R, Kawakatsu H. 2010. Buoyancy, bending, and seismic visibility in deep slab stagnation. Physics of the Earth and Planetary Interiors, 183(1-2): 330-340.
[2]  Birch F. 1952. Elasticity and constitution of the earth''s interior. Journal of Geophysical Research, 57(2): 227-286.
[3]  Bouhifd M A, Andrault D, Fiquet G, et al. 1996. Thermal expansion of forsterite up to the melting point. Geophysical Research Letters, 23(10): 1143-1146.
[4]  Chien-Min S, Burns R G. 1976. Kinetics of high-pressure phase transformations: Implications to the evolution of the olivine-spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics, 31(1): 1-32.
[5]  Creager K C, Jordan T H. 1986. Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific. Journal of Geophysical Research: Solid Earth, 91(B3): 3573-3589.
[6]  Green H W II, Burnley P C. 1990. The failure mechanism for deep-focus earthquakes. Geological Society, London, Special Publications, 54(1): 133-141.
[7]  Honda S. 1985. Thermal structure beneath Tohoku, northeast Japan. Tectonophysics, 112(1-4): 69-102.
[8]  Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research, 111(B9), doi:10.1029/2005JB004066.
[9]  Iidaka T, Suetsugu D. 1992. Seismological evidence for metastable olivine inside a subducting slab. Nature, 356(6370): 593-595.
[10]  Meade C, Jealoz R. 1991. Deep-focus earthquakes and recycling of water into the earth''s mantle. Science, 252(5002): 68-72.
[11]  Minear J W, Toks?z M N. 1970. Thermal regime of a downgoing slab and new global tectonics. Journal of Geophysical Research, 75(8): 1397-1419.
[12]  Negredo A M, Replumaz A, Villaseor A, et al. 2007. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region. Earth and Planetary Science Letters, 259(1-2): 212-225.
[13]  Ning J Y, Zang S X. 1999. On the generation of deep focus earthquakes in subduction zones. Acta Seismologica Sinica (in Chinese), 21(5): 523-532.
[14]  Ning J Y, Zang S X. 2001. Numerical simulation of P-wave velocity structure of subduction zones. Chinese Journal of Geophysics (in Chinese), 44(2): 190-198.
[15]  Ringwood A E, Major A. 1970. The system Mg2SiO4-Fe2SiO4 at high pressure and temperatures. Physics of the Earth and Planetary Interiors, 3: 89-108.
[16]  Rubie D C, Ross C R II. 1994. Kinetics of the olivine-spinel transformation in subducting lithosphere: Experimental constraints and implications for deep slab processes. Physics of the Earth and Planetary Interiors, 86(1-3): 223-243.
[17]  Schmeling H, Monz R, Rubie D C. 1999. The influence of olivine metastability on the dynamics of subduction. Earth and Planetary Science Letters, 165(1): 55-66.
[18]  Toks?z M N, Minear J W, Julian B R. 1971. Temperature field and geophysical effects of a downgoing slab. Journal of Geophysical Research, 76(5): 1113-1138.
[19]  Yoshioka S, Daessler R, Yuen D A. 1997. Stress fields associated with metastable phase transitions in descending slabs and deep-focus earthquakes. Physics of the Earth and Planetary Interiors, 104(4): 345-361.
[20]  Zang S X, Song H Z, Ning J Y. 1993. On the thermal structure of the Japan Sea subduction zone and the effect of the heat sources. Chinese Journal of Geophysics (in Chinese), 36(2): 164-173.
[21]  Zang S X, Ning J Y, Chen Y W, et al. 1994. Thermal structures of the subduction zones for two types of mantle convection models. Chinese Journal of Geophysics (in Chinese), 37(4): 448-455.
[22]  Zang S X, Ning J Y. 1994. The negative buoyancy of the subduction zone and its affecting factors. Chinese Journal of Geophysics (in Chinese), 37(2): 174-183.
[23]  Zang S X, Ning J Y. 1996. Study on the subduction zone in western Pacific and its implication for the geodynamics. Chinese Journal of Geophysics (in Chinese), 39(2): 188-202.
[24]  Zhang J F, Green H W II, Bozhilov K, et al. 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 428(6983): 633-636.
[25]  Allègre C J, Staudacher T, Sarda P. 1987. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth''s mantle. Earth and Planetary Science Letters, 81(2-3): 127-150.
[26]  Bina C R. 1997. Patterns of deep seismicity reflect buoyancy stresses due to phase transitions. Geophysical Research Letters, 24(24): 3301-3304.
[27]  Carminati E, Negredo A M, Valera J L, et al. 2005. Subduction-related intermediate-depth and deep seismicity in Italy: insights from thermal and rheological modelling. Physics of the Earth and Planetary Interiors, 149(1): 65-79.
[28]  Chen W P, Brudzinski M R. 2003. Seismic anisotropy in the mantle transition zone beneath Fiji-Tonga. Geophysical Research Letters, 30(13), doi: 10. 1029/2002GL016330.
[29]  Dobson D P, Meredith P G, Boon S A. 2002. Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298(5597): 1407-1410.
[30]  Fukao Y, Obayashi M, Inoue H, et al. 1992. Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research, 97(B4): 4809-4822.
[31]  Green H W II, Burnley P C. 1989. A new self-organizing, mechanism for deep-focus earthquakes. Nature, 341(6244): 733-737.
[32]  Green H W II, Young T E, Walker D, et al. 1990. Anticrack-associated faulting at very high pressure in natural olivine. Nature, 348(6303): 720-722.
[33]  Griggs D T, Baker D W. 1969. The origin of deep-focus earthquakes. //Mark H, Fernback S eds. Properties of Matter under Unusual Conditions. New York: Wiley Interscience.
[34]  He J K, Liu F T. 1998. Relationship between the morphology of subducted slabs and the tectonic evolution in the active continental margins. Progress in Geophysics (in Chinese), 13(2): 15-25.
[35]  Iidaka T, Furukawa Y. 1994. Double seismic zone for deep earthquakes in the Izu-Bonin subduction zone. Science, 263(5150): 1116-1118.
[36]  Jeanloz R, Richter F M. 1979. Convection, composition, and the thermal state of the lower mantle. Journal of Geophysical Research, 84(B10): 5497-5504.
[37]  Jiang G M, Zhao D P. 2011. Metastable olivine wedge in the subducting Pacific slab and its relation to deep earthquakes. Journal of Asian Earth Sciences, 42(6): 1411-1423.
[38]  Kaneshima S, Okamoto T, Takenaka H. 2007. Evidence for a metastable olivine wedge inside the subducted Mariana slab. Earth and Planetary Science Letters, 258(1): 219-227.
[39]  Kirby S H, Stein S, Okal E A, et al. 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 34(2): 261-306.
[40]  Mahatsente R, Ranalli G. 2004. Time evolution of negative buoyancy of an oceanic slab subducting with varying velocity. Journal of Geodynamics, 38(2): 117-129.
[41]  Monnereau M, Quéré S. 2001. Spherical shell models of mantle convection with tectonic plates. Earth and Planetary Science Letters, 184(3): 575-587.
[42]  Negredo A M, Valera J L, Carminati E. 2004. TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations. Computers & Geosciences, 30(3): 249-258.
[43]  Ogawa M. 1987. Shear instability in a viscoelastic material as the cause of deep focus earthquakes. Journal of Geophysical Research, 92(B13): 13801-13810.
[44]  O''Connell R J. 1977. On the scale of mantle convection. Tectonophysics, 38(1-2): 119-136.
[45]  Peacock S M, Wang K L. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286(5441): 937-939.
[46]  Stein C A, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391): 123-129.
[47]  Stein S, Stein C A. 1996. Thermo-mechanical evolution of oceanic lithosphere: implications for the subduction process and deep earthquakes. Geophysical Monograph Series, 96: 1-17.
[48]  Sun W B, He Y S. 2004. Characteristics of the subduction zone in the western Pacific and its stress state. Chinese Journal of Geophysics (in Chinese), 47(3): 433-440.
[49]  Van der Hilst R D, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578-584.
[50]  Xu Y S, Shankland T J, Linhardt S, et al. 2004. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Physics of the Earth and Planetary Interiors, 143-144: 321-336.
[51]  Ye Z R, Teng C K, Xie X B. 1991. Shear heating instability and its application to the study of mechanism of deep focus earthquakes. Chinese Journal of Geophysics (in Chinese), 34(3): 302-308.
[52]  Zang S X, Ning J Y. 2001. The influences of metastable olivine on the negative buoyancy of subduction zones and their geodynamic significance. Chinese Journal of Geophysics (in Chinese), 44(3): 336-345.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133