全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含孔隙、裂隙致密介质中多极子声波的传播特征

DOI: 10.6038/cjg20140921, PP. 2961-2970

Keywords: 孔裂隙介质,致密地层,多极子声波测井

Full-Text   Cite this paper   Add to My Lib

Abstract:

非常规油气藏(如致密性地层及蕴藏油气的页岩地层)的重要特征是低孔、低渗,但裂隙或裂缝比较发育.为满足非常规勘探的需求,本文将孔、裂隙介质弹性波传播理论应用于多极子声波测井的井孔声场模拟,重点研究了致密介质中裂隙发育时多极子声波的传播机理以及衰减特征.井孔声场的数值计算结果表明裂隙的存在明显改变了弹性波和井孔模式波的频散、衰减和激发强度,尤其是井壁临界折射纵波的激发谱的峰值随着频率的增加逐渐降低,这与应用经典的Biot理论下的计算结果相反,且裂隙的存在也使得饱含水和饱含气时临界折射纵波激发强度的差异变大.井孔模式波的衰减与地层横波衰减和井壁流体交换有关,井壁开孔边界下致密地层裂隙发育还使得井孔斯通利波和艾里相附近的弯曲波对孔隙流体的敏感性增强,在井壁闭孔边界条件下引起井孔模式波衰减的主要因素是裂隙引起的地层横波衰减造成的,且在截止频率附近弯曲波的衰减与地层的横波衰减一致.数值计算结果为解释非常规油气地层的声学响应特征提供了参考.

References

[1]  Ba J. 2010. Wave propagation theory in double-porosity medium and experimental analysis on seismic responses. Scientia Sinica (Physica, Mechanica & Astronomica) (in Chinese), 40(11): 1398-1409.
[2]  Chen X L, Tang X M. 2012. Numerical study on the characteristics of acoustic logging response in the fluid-filled borehole embedded in crack-porous medium. Chinese J. Geophys. (in Chinese), 55(6): 2129-2140, doi: 10. 6038/j. issn. 0001-5733. 2012. 06. 035.
[3]  Chen X L, Qian Y P, Tang X M. 2013. Infuence of crack on acoustic propagation characteristics in low porosity and low permeability gas reservoir. Journal of China University of Petroleum (in Chinese), 37(4): 88-93, doi: 10. 3969/j. issn. 1673-5005. 2013. 04. 013.
[4]  Tang X M, Chen X L, Xu X K. 2012. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations. Geophysics, 77(6): D245-D252, doi: 10. 1190/geo2012-0091. 1.
[5]  Tsang L, Rader D. 1979. Numerical evaluation of the transient acoustic waveform due to a point source in a fluid-filled borehole. Geophysics, 44(10): 1706-1720, doi: 10. 1190/1. 1440932.
[6]  Zhang B X, Wang K X, Dong Q D. Theory of acoustic multipole logging and analysis of wave components and calculation of full waveforms for two-phase medium formation. Chinese J. Geophys. (in Chinese), 1995, 38(S1): 178-192.
[7]  Zhang H L, Wang X M, Zhang B X. 2004. Acoustic Field and Waves in Borehole (in Chinese). Beijing: Science Press.
[8]  Chen X L, Tang X M, Qian Y P. 2014. Simulation of multipole acoustic logging in cracked porous formations. Geophysics, 79(1): D1-D10, doi: 10.1190/geo2013-0163.1.
[9]  Dong Q D, Wang K X, Luo C S, et al. 1991. Resonance and attenuation of the head wave in a fluid-filled borehole. Chinese J. Geophys. (in Chinese), 34(2): 228-239.
[10]  Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533, doi: 10. 1190/1. 1443435.
[11]  Markova I, Jarillo G R, Markov M, et al. 2013. Squirt flow influence on sonic log parameters. Geophysical Journal International, doi: 10.1093/gji/ggt442.
[12]  Schmitt D P. 1989. Acoustic multipole logging in transversely isotropic poroelastic formations. J. Acoust. Soc. Am., 86(6): 2397-2421, doi. org/10. 1121/1. 398448.
[13]  Song Y J, Hu H S. 2013. Effects of squirt-flow in cracks on drained bulk modulus of porous media. Chinese Journal of Theoretical and Applied Mechanics (in Chinese), 45(3): 395-404, doi: 10. 6052/0459-1879-12-230.
[14]  Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks—An extension of Biot''s poroelastic wave theory. Sci. China Earth Sci., 54(9): 1441-1452, doi: 10. 1007/s11430-011-4245-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133