Ali F E, El-Dokany I M, Saad A A, et al. 2008. Curvelet fusion of MR and CT images. Progress in Electromagnetics Research C, 3: 215-224, doi: 10.2528/PIERC08041305.
[2]
Applebaum L, Howard S D, Searle S, et al. 2009. Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery. Applied and Computational Harmonic Analysis, 26(2): 283-290, doi: 10.1016/j.acha.2008.08.002.
[3]
Bochner S, Chandrasekharan K. 1949. Fourier Transforms. Princeton: Princeton University Press.
[4]
Bregman L M. 1967. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7(3): 200-217, doi: 10.1016/0041-5553(67)90040-7.
[5]
Candès E J, Donoho D L. 2005a. Continuous curvelet transform I: resolution of the Wavefront Set. Applied and Computational Harmonic Analysis, 19(2): 162-197, doi: 10.1016/j.acha.2005.02.003.
[6]
Candès E J, Demanet L, Donoho D L, et al. 2006b. Fast discrete curvelet transforms. SIAM Multiscale Model. Simul., 5(3): 861-899, doi: 10.1137/05064182X.
[7]
Candès E J, Romberg J, Tao T. 2006c. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory, 52(2): 489-509, doi: 10.1109/TIT.2005.862083.
[8]
Candès E J, Romberg J K, Tao T. 2006d. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8): 1207-1223, doi: 10.1002/cpa.20124.
[9]
Candes E J. 2008. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(9-10): 589-592, doi: 10.1016/j.crma.2008.03.014.
[10]
Chen S B, Donoho D L, Saunders M A. 1994. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1): 33-61, doi: 10.1137/S003614450037906x.
[11]
Chui C K. 1992. An Introduction to Wavelets. San Diego: Academic Press.
[12]
Herrmann F J, Wang D, Hennenfent G. 2007. Multiple prediction from incomplete data with the focused Curvelet transform. Presented at the SEG International Exposition and 77th Annual Meeting.
[13]
Herrmann F J, Hennenfent G. 2008. Non-parametric seismic data recovery with Curvelet frames. Geophysical Journal of International, 173(1): 233-248, doi: 10.1111/j.1365-246X.2007.03698.x.
[14]
Landweber L. 1951. An iteration formula for Fredholm integral equations of the first kind. American Journal of Mathematics, 73(3): 615-624, doi: 10.2307/2372313.
[15]
Leiserson C E, Rivest R L, Stein C, et al. 2001. Introduction to Algorithms, Chapter 16 "Greedy Algorithms": The MIT Press.
[16]
Ma J W. 2011. Improved iterative Curvelet thresholding for compressed sensing. IEEE Transactions on Instrumentation and Measurement, 60(1): 126-136, doi: 10.1109/TIM.2010.2049221.
[17]
Mallat S. 2008. A Wavelet Tour of Signal Processing: The Sparse Way. San Diego: Academic Press.
[18]
Mallat S G, Zhang Z. 1993. Matching Pursuits with time-frequency dictionaries. IEEE Trans. Signal Process, 41(12): 3397-3415, doi: 10.1109/78.258082.
[19]
Yarham C, Boeniger U, Herrmann F. 2006. Curvelet-based ground roll removal. 2006 SEG Annual Meeting.
[20]
Yin W T. 2010. Analysis and generalizations of the Linearized Bregman Method. SIAM J. Imaging Sci., 3(4): 856-877, doi: 10.1137/090760350.
[21]
Candès E J, Donoho D L. 2005b. Continuous curvelet transform: II. discretization and frames. Applied and Computational Harmonic Analysis, 19(2):198-222, doi: 10.1016/j.acha.2005.02.004.
[22]
Candès E J, Tao T. 2006a. Near optimal signal recovery from random projections: universal encoding strategies. IEEE Transactions on Information Theory, 52(12): 5406-5425, doi: 10.1109/TIT.2006.885507.
[23]
Daubechies I, Defrise M, De Mol C. 2004. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11): 1413-1457, doi: 10.1002/cpa.20042.
[24]
Deans S R. 1983. The Radon Transform and Some of Its Applications. New York: John Wiley & Sons.
[25]
Donoho D L. 2006. Compressed sensing. IEEE Transactions on Information Theory, 52(4): 1289-1306, doi: 10.1109/TIT.2006.871582.
[26]
Donoho D L, Tsaig Y, Drori I, et al. 2012. Sparse solution of underdetermined systems of linear equations by Stagewise Orthogonal Matching Pursuit. IEEE Trans. on information Theory, 58(2): 1094-1121, doi: 10.1109/TIT.2011.2173241.
[27]
Pati Y C, Rezaiifar R, Krishnaprasad P S. 1993. Orthogonal Matching Pursuit: recursive function approximation with application to wavelet decomposition. In Asilomar Conf. on Signals, Systems and Computers in 1993.
[28]
Plancherel M. 1910. Contribution à l''étude de la représentation d''une fonction arbitraire par les integrals définies. Rendiconti del Circolo Matematico di Palermo, 30(1): 289-335, doi: 10.1007/BF03014877.
[29]
Starck J L, Murtagh F, Candès E J, et al. 2003. Gray and color image contrast enhancement by the Curvelet Transform. IEEE Transaction on Image Processing, 12(6): 706-717, doi: 10.1109/TIP.2003.813140.