全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

各向异性Radon变换及其在多次波压制中的应用

DOI: 10.6038/cjg20140918, PP. 2928-2936

Keywords: 各向异性,Radon变换,长偏移距,多次波压制

Full-Text   Cite this paper   Add to My Lib

Abstract:

即使采用分辨率很高的双曲Radon变换,对速度各向异性发育介质及长偏移距情况下的地震数据,其Radon域内能量仍不收敛.为了克服此难题,我们在Radon变换的积分路径中考虑了非双曲走时的影响,通过引入非双曲时差公式中的各向异性非椭圆率η参数,可以准确描述出长偏移距条件下来自同一层位的时距曲线,并推导了由偏移距、慢度、非椭圆率三参数控制的积分曲线正反变换公式,我们称之为各向异性Radon变换.离散化求解时,各向异性Radon变换是时变的,频率域快速算法已不适用,本文采用了最优相似系数加权Gauss-Seidel迭代算法,保持其计算精度的同时也有较高的计算效率.将此方法应用在模型数据以及实际长偏移距海上地震数据的多次波压制处理中,收到了较好的处理效果.

References

[1]  Huang X W, Wu L, Song W. 2004. 3D Pre-Stack depth migration with radon projection. Chinese J. Geophys. (in Chinese), 47(2): 321-326.
[2]  Ng M, Perz M. 2004. High resolution Radon transform in the t-x domain using "intelligent" prioritization of the Gauss-Seidel estimation sequence.//74th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 2160-2163.
[3]  Niu B H, Sun C Y, Zhang Z J, et al. 2001. Polynomial Radon transform. Chinese J. Geophys. (in Chinese), 44(2): 263-271.
[4]  Abbad B, Ursin B, Rappin D. 2009. Automatic nonhyperbolic velocity analysis. Geophysics, 74(2): U1-U12.
[5]  Alkhalifah T, Tsvankin I. 1995. Velocity analysis for transversely isotropic media. Geophysics, 60(5): 1550-1566.
[6]  Beylkin G. 1987. Discrete radon transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(2): 162-712.
[7]  Feng X, Zhang X W, Liu C, et al. 2011. Separating P-P and P-SV wave by parabolic Radon transform with multiple coherence. Chinese J. Geophys. (in Chinese), 54(2): 304-309,doi: 10.3969/j.issn.0001-5733.2011.02.005.
[8]  Gong X B, Han L G, Wang E L, et al. 2009. Denoising via high resolution Radon transform. Journal of Jilin University(Earth Science Edition) (in Chinese), 39(1): 152-157.
[9]  Gong X B, Lv Q T, Han L G. 2013. Anisotropic Radon transform.//75th EAGE Conference & Exhibition Extended Abstracts.
[10]  Schonewille M A, Aaron P A. 2007. Applications of time-domain high-resolution Radon demultiple.//77th Ann. Internat Mtg., SEG Technical Program Expanded Abstracts, 2565-2569.
[11]  Trad D O, Ulrych T J, Sacchi M D. 2002. Accurate interpolation with high-resolution time-variant Radon transforms. Geophysics, 67(2): 644-656.
[12]  Wang J F, Ng M, Perz M. 2010. Seismic data interpolation by greedy local Radon transform. Geophysics, 75(6): WB225-WB234.
[13]  Wang W H, Shou H, Liu H, et al. 2006. High resolution τ-ρ transform in linear events wavefield separation. Progress in Geophysics (in Chinese), 21(1): 74-78.
[14]  Wang W H, Pei J Y, Zhang J F. 2007. Prestack seismic data reconstruction using weighted parabolic Radon transform. Chinese J. Geophys. (in Chinese), 50(3): 851-859.
[15]  Wang Y H. 2003. Multiple attenuation: Coping with the spatial truncation effect in the Radon transform domain. Geophysical Prospecting, 51(1): 75-87.
[16]  Xiong D, Zhao W, Zhang J F. 2009. Hybrid-domain high-resolution parabolic Radon transform and its application to demultiple. Chinese J. Geophys. (in Chinese), 52(4): 1068-1077.
[17]  Zeng Y L, Le Y S, Shan Q T, et al. 2007. VSP wavefield separation based on high-resolution Radon transformation. Geophysical Prospecting for Petroleum (in Chinese), 46(2): 115-119, 173.
[18]  Pan D M, Hu M S, Cui R F, et al. 2010. Dispersion analysis of Rayleigh surface waves and application based on Radon transform. Chinese J. Geophys. (in Chinese), 53(11): 2760-2766, doi:10.3969/j.issn.0001-5733.2010.11.025.
[19]  Sacchi M D, Ulrych T J. 1995. High-resolution velocity gathers and offset space reconstruction. Geophysics, 60(4): 1169-1177.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133