全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双相介质中地震波的频率-空间域数值模拟

DOI: 10.6038/cjg20140914, PP. 2885-2899

Keywords: BISQ模型,双相各向同性介质,频率-空间域,有限差分算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用优化的25点频率-空间域有限差分算法对基于BISQ模型双相各向同性介质中的地震波进行了数值模拟.通过与经典的Biot模型理论模拟结果进行对比,分析了Biot流动(宏观流体流动)和Squirt流动(微观流体流动)耦合作用对地震波在孔隙介质中传播特性的影响.数值模拟在地震频段进行,结果显示:在理想相界和黏滞相界情况下,Squirt流动机制都比Biot流动机制产生了更大的速度频散和能量衰减.其中,在Biot流动和Squirt流动耦合作用下的快P波的速度和振幅小于仅考虑Biot流动影响下快P波速度和振幅,而且慢P波的衰减也更加强烈.本文还研究了地震波在双层双相各向同性介质分界面处的反射和透射特征,双相介质中波的反射与透射现象类似于单相介质的情况.模拟结果表明,利用优化25点频率-空间域有限差分法模拟双相孔隙介质中的地震波场是可行的,这为开展双相孔隙介质全波形反演问题的研究提供了可能.

References

[1]  Arntsen B, Carcione J M. 2001.Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner Sandstone. Geophysics, 66(3): 890-896.
[2]  Berenger J P. 1994. A perfectly matched layer for the absorption of electromagnetic waves.Journal of Computational Physics, 114(2): 185-200.
[3]  Carcione J M. 1996. Wave propagation in anisotropic, saturated porous media: Plane-wave theory and numerical simulation. J. Acoust. Soc. Am., 99(5): 2655-2666.
[4]  Carcione J M, Gurevich B. 2011. Differential form and numerical implementation of Biot''s poroelasticity equations with squirt dissipation. Geophysics, 76(6): N55-N64.
[5]  Dai N, Vafidis A, Kanasewich E R. 1995.Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method. Geophysics, 60(2): 327-340.
[6]  Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.
[7]  Parra J O. 1997. The transversely isotropic poroelastic wave equation including the Biot and the squirt mechanisms: Theory and application. Geophysics, 62(1): 309-318.
[8]  Parra J O. 2000.Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy. Geophysics, 65(1): 202-210.
[9]  Min D J, Shin C, Kwon B D, et al. 2000. Improved frequency-domain elastic wave modeling using weighted-averaging difference operators. Geophysics, 65(3): 884-895.
[10]  Yang K D, Song G J, Li J S. 2011. FCT compact difference simulation of wave propagation based on the Biot and the squirt-flow coupling interaction. Chinese J. Geophys. (in Chinese), 54(5): 1348-1357, doi: 10.3969/j.issn. 0001-5733.2011.05.024.
[11]  Yang K D, Yang D H, Wang S Q. 2002a. Wavefield simulation based on the Biot/Squirt equation. Chinese J. Geophys. (in Chinese), 45(6): 853-861.
[12]  Yang K D, Yang D H, Wang S Q. 2002b. Numerical simulation of elastic wave propagations based on the transversely isotropic BISQ equation. Acta Seismologica Sinica, 24(6): 599-606.
[13]  Zhang X W, Wang D L, Wang Z J, et al. 2010. The study on azimuth characteristics of attenuation and dispersion in 3D two-phase orthotropic crack medium based on BISQ mechanism. Chinese J. Geophys. (in Chinese), 53(10): 2452-2459, doi: 10.3969/j.issn.0001-5733.2010.10.019.
[14]  Biot M A. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid, PartⅠ: low frequency range. J. Acoust. Soc. Am., 28(2): 168-178.
[15]  Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33(4): 1482-1498.
[16]  Chen Y F, Yang D H, Yang H Z. 2002. Biot/squirt model in viscoelastic porous media. Chinese Physics Letters, 19(3): 445-448.
[17]  Du Q Z, Wang X M, Ba J, et al. 2011. An equivalent medium model for wave simulation in fractured porous rocks. Geophysical Prospecting, 60(5): 940-956.
[18]  Li H X, Liu C, Tao C H. 2007. Elastic wave high-order staggering grid finite-difference numerical simulation based on transversely isotropic BISQ model. Oil Geophysical Prospecting (in Chinese), 42(6): 686-693.
[19]  Li H X, Tao C H, Zhou J P, et al. 2009. Analysis on velocity and attenuation feature of wavefield in biphase anisotropic medium. Oil Geophysical Prospecting (in Chinese), 44(4): 457-465.
[20]  Liu C, Lan H T, Guo Z Q, et al. 2013. Pseudo-spectral modeling and feature analysis of wave propagation in two-phase HTI medium based on reformulated BISQ mechanism.Chinese J. Geophys. (in Chinese), 56(10): 3461-3473, doi: 10.6038/cjg20131021.
[21]  Liu C, Li H X, Tao C H. 2007. Based on BISQ model three-dimensional elastic waves in isotropic porous media staggered-grid high-order finite-difference numerical simulation. Global Geology, 26(4): 501-508.
[22]  Liu L, Liu H, Liu H W. 2013. Optimal 15-point finite difference forward modeling in frequency-space domain.Chinese J. Geophys. (in Chinese), 56(2): 644-652, doi: 10.6038/cjg20130228.
[23]  Nie J X, Yang D H, Ba J. 2010. Velocity dispersion and attenuation of waves in low-porosity-permeability anisotropic viscoelastic media with clay. Chinese J. Geophys. (in Chinese), 53(2): 385-392, doi: 10.3969/j.issn.0001-5733.2010.02.016.
[24]  Nie J X, Yang D H, Yang H Z. 2004. The inversion of reservoir parameters based on the BISQ model in partially saturated porous medium. Chinese J. Geophys. (in Chinese), 47(6): 1101-110.
[25]  Nie J X, Yang D H, Yang H Z.2008. A generalized viscoelastic Biot/squirt model for clay-bearing sandstones in a wide range of permeabilities. Applied Geophysics, 5(4): 249-260.
[26]  Wang Z J, He Q D, Wang D L. 2008. The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model. Applied Geophysics, 5(1): 24-43.
[27]  Wu G C, Luo C M, Liang K. 2007.Frequency-space domain finite difference numerical simulation of elastic wave in TTI media. Journal of Jilin University (Earth Science Edition), 37(5): 1023-1033.
[28]  Yang D H, Zhang Z J. 2000. Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves. Chinese Science Bulletin, 45(23): 2130-2138.
[29]  Yang D H, Zhang Z J.2002. Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35(3): 223-245.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133