Arntsen B, Carcione J M. 2001.Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner Sandstone. Geophysics, 66(3): 890-896.
[2]
Berenger J P. 1994. A perfectly matched layer for the absorption of electromagnetic waves.Journal of Computational Physics, 114(2): 185-200.
[3]
Carcione J M. 1996. Wave propagation in anisotropic, saturated porous media: Plane-wave theory and numerical simulation. J. Acoust. Soc. Am., 99(5): 2655-2666.
[4]
Carcione J M, Gurevich B. 2011. Differential form and numerical implementation of Biot''s poroelasticity equations with squirt dissipation. Geophysics, 76(6): N55-N64.
[5]
Dai N, Vafidis A, Kanasewich E R. 1995.Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method. Geophysics, 60(2): 327-340.
[6]
Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.
[7]
Parra J O. 1997. The transversely isotropic poroelastic wave equation including the Biot and the squirt mechanisms: Theory and application. Geophysics, 62(1): 309-318.
[8]
Parra J O. 2000.Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy. Geophysics, 65(1): 202-210.
[9]
Min D J, Shin C, Kwon B D, et al. 2000. Improved frequency-domain elastic wave modeling using weighted-averaging difference operators. Geophysics, 65(3): 884-895.
[10]
Yang K D, Song G J, Li J S. 2011. FCT compact difference simulation of wave propagation based on the Biot and the squirt-flow coupling interaction. Chinese J. Geophys. (in Chinese), 54(5): 1348-1357, doi: 10.3969/j.issn. 0001-5733.2011.05.024.
[11]
Yang K D, Yang D H, Wang S Q. 2002a. Wavefield simulation based on the Biot/Squirt equation. Chinese J. Geophys. (in Chinese), 45(6): 853-861.
[12]
Yang K D, Yang D H, Wang S Q. 2002b. Numerical simulation of elastic wave propagations based on the transversely isotropic BISQ equation. Acta Seismologica Sinica, 24(6): 599-606.
[13]
Zhang X W, Wang D L, Wang Z J, et al. 2010. The study on azimuth characteristics of attenuation and dispersion in 3D two-phase orthotropic crack medium based on BISQ mechanism. Chinese J. Geophys. (in Chinese), 53(10): 2452-2459, doi: 10.3969/j.issn.0001-5733.2010.10.019.
[14]
Biot M A. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid, PartⅠ: low frequency range. J. Acoust. Soc. Am., 28(2): 168-178.
[15]
Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33(4): 1482-1498.
[16]
Chen Y F, Yang D H, Yang H Z. 2002. Biot/squirt model in viscoelastic porous media. Chinese Physics Letters, 19(3): 445-448.
[17]
Du Q Z, Wang X M, Ba J, et al. 2011. An equivalent medium model for wave simulation in fractured porous rocks. Geophysical Prospecting, 60(5): 940-956.
[18]
Li H X, Liu C, Tao C H. 2007. Elastic wave high-order staggering grid finite-difference numerical simulation based on transversely isotropic BISQ model. Oil Geophysical Prospecting (in Chinese), 42(6): 686-693.
[19]
Li H X, Tao C H, Zhou J P, et al. 2009. Analysis on velocity and attenuation feature of wavefield in biphase anisotropic medium. Oil Geophysical Prospecting (in Chinese), 44(4): 457-465.
[20]
Liu C, Lan H T, Guo Z Q, et al. 2013. Pseudo-spectral modeling and feature analysis of wave propagation in two-phase HTI medium based on reformulated BISQ mechanism.Chinese J. Geophys. (in Chinese), 56(10): 3461-3473, doi: 10.6038/cjg20131021.
[21]
Liu C, Li H X, Tao C H. 2007. Based on BISQ model three-dimensional elastic waves in isotropic porous media staggered-grid high-order finite-difference numerical simulation. Global Geology, 26(4): 501-508.
[22]
Liu L, Liu H, Liu H W. 2013. Optimal 15-point finite difference forward modeling in frequency-space domain.Chinese J. Geophys. (in Chinese), 56(2): 644-652, doi: 10.6038/cjg20130228.
[23]
Nie J X, Yang D H, Ba J. 2010. Velocity dispersion and attenuation of waves in low-porosity-permeability anisotropic viscoelastic media with clay. Chinese J. Geophys. (in Chinese), 53(2): 385-392, doi: 10.3969/j.issn.0001-5733.2010.02.016.
[24]
Nie J X, Yang D H, Yang H Z. 2004. The inversion of reservoir parameters based on the BISQ model in partially saturated porous medium. Chinese J. Geophys. (in Chinese), 47(6): 1101-110.
[25]
Nie J X, Yang D H, Yang H Z.2008. A generalized viscoelastic Biot/squirt model for clay-bearing sandstones in a wide range of permeabilities. Applied Geophysics, 5(4): 249-260.
[26]
Wang Z J, He Q D, Wang D L. 2008. The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model. Applied Geophysics, 5(1): 24-43.
[27]
Wu G C, Luo C M, Liang K. 2007.Frequency-space domain finite difference numerical simulation of elastic wave in TTI media. Journal of Jilin University (Earth Science Edition), 37(5): 1023-1033.
[28]
Yang D H, Zhang Z J. 2000. Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves. Chinese Science Bulletin, 45(23): 2130-2138.
[29]
Yang D H, Zhang Z J.2002. Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35(3): 223-245.