全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高频GNSS形变波的震相识别:模拟实验与实例分析

DOI: 10.6038/cjg20140908, PP. 2813-2825

Keywords: 实时高频GNSS形变波,振动台模拟实验,强震震例,震相分析,震相识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

高频GNSS震时形变波震相及识别是GNSS地震学的重要内容.在实时数据处理基础上,本文利用振动台的高频GNSS观测实验,并结合近期部分大震的高频GNSS形变波震相特征进行研究.数据处理结果表明,实时处理与事后处理的精度在同一量级,且与采样率无关.通过与同址观测强震仪和地震计记录的对比及特定震相的频谱分析,发现高频GNSS可完整记录P波、S波、Love波及Rayleigh波震相,影响震相记录的主要因素是GNSS定位精度与震级,而仅当震中距很小时,采样率将产生一定影响.研究结果得出:基于地震波传播规律,利用高频GNSS台阵记录的形变波空间分段特征,结合震相运动轨迹及其他地震波记录,可实现实时高频GNSS形变波的震相识别.

References

[1]  Allen R M, Ziv A. 2011. Application of real-time GPS to earthquake early warning. Geophys. Res. Lett., 38(16): L16310, doi: 10. 1029/2011GL047947.
[2]  Avallone A, Anastasio E D, Serpelloni E, et al. 2012. High-rate(1 Hz to 20 Hz) GPS coseismic dynamic displacements carried out during the Emilia 2012 seismic sequence. Ann. Geophys., 55(4): 773-779, doi: 10. 4401/ag-6162.
[3]  Avallone A, Matzario M, Cirella A, et al. 2011. Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquake: The case of the Mw6.3 L''Aquila (Central Italy) event. J. Geophys. Res., 116: B02305, doi: 10. 1029/2010JB007834.
[4]  Bilich A, Cassidy J F, Larson K M. 2008. GPS seismology: Application to the 2002 Mw7.9 Denali fault earthquake. Bull. Seismol. Soci. Am., 98(2): 593-606, doi: 10. 1785/0120070096.
[5]  Blewitt G, Kreemer C, Hammond W C, et al. 2006. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophys. Res. Lett., 33(11): L11309, doi: 10. 1029/2006GL026145.
[6]  Bock Y, Melgar D, Crowell B W. 2011. Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bull. Seismol. Soci. Am., 101(6): 2904-2925, doi: 10. 1785/0120110007.
[7]  Bock Y, Nikolaidis R M, De Jonge P J. 2000. Instantaneous geodetic positioning at medium distances with the Global Positioning System. J. Geophys. Res., 105(B12): 28223-28253.
[8]  Bock Y, Prawirodirdjo L, Melbourne T I. 2004. Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys. Res. Lett., 31(6): L06604, doi: 10. 1029/2003GL019150.
[9]  Davis J P, Smalley R Jr. 2009. Love wave dispersion in central North America determined using absolute displacement seismograms from high-rate GPS. J. Geophys. Res., 114(B11): B11303, doi: 10. 1029/2009JB006288.
[10]  Delouis B, Nocquet J M, Vallee M. 2010. Slip distribution of the February 27, 2010 Mw8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophys. Res. Lett., 37(17): L17305, doi: 10. 1029/2010GL043899.
[11]  Fang R X, Shi C, Gu S. 2009. Precise Point Positioning with high-rate GPS data applied to seismic displacements analysis. Geomatics and Information Science of Wuhan University (in Chinese), 34(11): 1340-1343.
[12]  Fang R X, Shi C, Song W W, et al. 2013. Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning. Geophys. J. Int., 196(1): 461-472, doi: 10. 1093/gji/ggt378.
[13]  Yin H T, Zhang P Z, Gan W J, et al. 2010. Near-field surface movement during the Wenchuan Ms8.0 earthquake measured by high-rate GPS. Chinese Sci. Bull. (in Chinese), 55(26): 2621-2626, doi: 10. 1007/s11434-010-4026-2.
[14]  Yokota Y, Koketsu K, Hikima K, et al. 2009. Ability of 1 Hz GPS data to infer the source process of a medium-sized earthquake: The case of the 2008 Iwate-Miyagi Nairiku, Japan, earthquake. Geophys. Res. Lett., 36(12): L12301, doi: 10. 1029/2009Gl03779.
[15]  Zhang X H, Guo F, Guo B F, et al. 2012. Coseismic displacement monitoring and wave picking with high-frequency GPS. Chinese J. Geophys. (in Chinese), 55(6): 1912-1918, doi: 10. 6038/j. issn. 001-5733.
[16]  Zheng Y, Li J, Xie Z J, et al. 2012. 5 Hz GPS seismology of the EI Mayor-Cucapah earthquake: Estimating the earthquake focal mechanism. Geophys. J. Int., 190(3): 1723-1732, doi: 10. 1111/j. 1365-246X. 2012. 05576. x.
[17]  Guo A Z. 2013. High-rate GPS and Its Application in Velocity Determination and Strong Ground Motion Monitoring (in Chinese)[Ph. D. thesis]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences.
[18]  Ji C, Larson K M, Tan Y, et al. 2004. Slip history of the 2003 San Simeon earthquake constrained by combining 1 Hz GPS, strong motion, and teleseismic data. Geophys. Res. Lett., 31(17): L17608, doi: 10. 1029/2004GL020448.
[19]  Kobayashi R, Miyazaki S, Koketsu K. 2006. Source processes of the 2005 West Off Fukuoka Prefecture earthquake and its largest aftershock inferred from strong motion and 1 Hz GPS data. Earth Planets and Space, 58(1): 57-62.
[20]  Larson K M, Bodin P, Gomberg J. 2003. Using 1 Hz GPS data to measure deformations caused by the denali fault earthquake. Science, 300(5624): 1421-1424, doi: 10. 1126/science. 1084531.
[21]  Li H, Wang D, Cai Y J, et al. 2012. Baseline correction of digital strong-motion data-examples from the 2008 Wenchuan, China, Earthquake. Adv. Mater. Res., 378-379: 247-250.
[22]  Li Q, You X Z, Yang S M, et al. 2012. A precise velocity field of tectonic deformation in China as inferred from intensive GPS observations. Sci. China Earth Sci. (in Chinese), 55(5): 695-698, doi: 10. 1007/s11430-012-4412-5.
[23]  Li X X, Ge M R, Zhang Y, et al. 2013. New approach for earthquake/tsunami monitoring using dense GPS networks. Scientific Reports, 3: 2682, doi: 10. 1038/srep02682.
[24]  Nikolaidis R M, Bock Y, De Jonge P J, et al. 2001. Seismic wave observations with the Global Positioning System. J. Geophys. Res., 106(B10): 21897-21916.
[25]  Shi C, Lou Y, Zhang H, et al. 2010. Seismic deformation of the Mw8.0 Wenchuan earthquake from high-rate GPS observations. Adv. Space Res., 46: 228-235, doi: 10. 1016/j. asr. 2010. 03. 06.
[26]  Wang J, Tan K, Yang S M, et al. 2013. Real-time GPS data processing with TrackRT. Journal of Geodesy and Geodynamics (in Chinese), 33(Supp1): 156-159.
[27]  Wang Q, Zhang P Z, Freymueller J F, et al. 2001. Present-day crustal deformation in china constrained by global positioning system measurements. Science, 294(5542): 574-577.
[28]  Xiong Y L, Huang D F, Xu S G, et al. 2010. Long distance kinematic gps data processing and kinematic crustal deformation features analysis of Wenchuan earthquake. Geomatics and Information Science of Wuhan University (in Chinese), 35(3): 265-269.
[29]  Xu P L, Shi C, Fang R X, et al. 2013. High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. J. Geodesy, 87(4): 361-372, doi: 10. 1007/s00190-012-0606-z.
[30]  Yang S T, Ye L P, Qian J R. 2002. Feature investigated of co-seismic displacement response spectra. Building Structure (in Chinese), 32(5): 47-50.
[31]  Yang S M, Nie Z S, Jia Z G, et al. 2011. Co-seismic displacements of 2011 Japan Mw9.0 earthquake recorded by far-field GPS stations. Geodesy and Geodynamics, 2(3): 12-15, doi: 10. 3724/SP. J. 1246. 2011. 00012.
[32]  Yin H T, Wdowinski S, Liu X Q, et al. 2013. Strong ground motion recorded by high-rate GPS of the 2008 Ms8.0 Wenchuan earthquake, China. Seism. Res. Lett., 84(2): 210-218, doi: 10. 1785/0220120109.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133