Agostinetti N P, Malinverno A. 2010. Receiver function inversion by trans-dimensional Monte Carlo sampling. Geophys. J. Int., 181(2): 858-872, doi:10.1111/j.1365-246X.2010. 04530.x.
[2]
Chen J S, Kemna A, Hubbard S. 2008. A comparison between Gauss-Newton and Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for Cole-Cole parameters. Geophysics, 73(6): F247-F259, doi:10.1190/1.2976115.
[3]
Egbert G D, Kelbert A. 2012. Computational recipes for electromagnetic inverse problems. Geophys. J. Int., 189(1): 251-267, doi:10.1111/j.1365-246X.2011.05347.x.
[4]
Green P J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4): 711-732.
[5]
Guo R W, Dosso S E, Liu J X, et al. 2011. Non-linearity in Bayesian 1-D magnetotelluric inversion. Geophys. J. Int., 185(2): 663-675, doi:10.1111/j.1365-246X.2011.04996.x.
[6]
Huang H P, Fraser D C. 1996. The differential parameter method for multifrequency airborne resistivity mapping. Geophysics, 61(1): 100-109.
[7]
Lei D, Hu X Y, Zhang S F. 2006. Development status of Airborne Electromagnetic. Contributions to Geology and Mineral Resources Research, 21(1):40-53.
[8]
Minsley B J. 2011. A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data. Geophys. J. Int., 187(1): 252-272.
[9]
Mitsuhata Y, Uchida T, Amano H. 2002. 2.5-D inversion of frequency-domain electromagnetic data generated by a grounded-wire source. Geophysics, 67(6): 1753-1768.
[10]
Ray A, Key K. 2012. Bayesian inversion of marine CSEM data with a trans-dimensional self parametrizing algorithm. Geophys. J. Int., 191(3): 1135-1151, doi:10.1111/j.1365-246X. 2012.05677.x.
[11]
Sambridge M, Gallagher K, Jackson A, et al. 2006. Trans-dimensional inverse problems, model comparison and the evidence. Geophys. J. Int., 167(2): 528-542, doi:10.1111/j.1365-246X.2006.03155.x.
[12]
Sengpiel K P. 1988. Approximate inversion of airborne EM data from a multilayered ground. Geophysical Prospecting, 36(4): 446-459.
[13]
Shi X M, Wang J Y, Zhang S Y. 2000. Multiscale genetic algorithm and its application in magnetotelluric sounding data inversion. Chinese J. Geophys. (in Chinese), 43(1): 122-130.
[14]
Trainor-Guitton W, Hoversten G M. 2011. Stochastic inversion for electromagnetic geophysics: Practical challenges and improving convergence efficiency. Geophysics, 76(6): F373-F386, doi:10.1190/GEO2010-0223.1.
[15]
Xu H L, Wu X P. 2006. 2D resistivity inversion using the neural network method. Chinese J. Geophys. (in Chinese), 49(2): 584-589.
[16]
Yin C C, Hodges G. 2007. Simulated annealing for airborne EM inversion. Geophysics, 72(4): F189-F196.
[17]
Malinverno A. 2002. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophys. J. Int., 151(3): 675-688.
[18]
Yao Y. 2002. The Basic Theory and Application of Geophysical Inversion Methods. Beijing: China University of Geosciences Press.
[19]
Yin C C. 2000. Geoelectrical inversion for a one-dimensional anisotropic model and inherent non-uniqueness. Geophys. J. Int., 140: 11-23.