Hirn A, Nercessian A, Sapin M, et al. 1984a. Lhasa block and bordering sutures—a continuation of a 500 km Moho traverse through Tibet. Nature, 307: 25-27, doi: 10. 1038/307025a0.
[2]
Karplus M S, Zhao W, Klemperer S L, et al. 2011. Injection of Tibetan crust beneath the south Qaidam basin: evidence from INDEPTH IV wide-angle seismic data. J. Geophys. Res., 116, B07301, doi: 10.1029/2010JB007911.
[3]
Klemperer S L. 2006. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow.//Law R D, Searle P, Godin L. Channel flow, ductile extrusion and exhumation in continental collision zones, Geological Society, London, Special Publications, 268: 39-70.
[4]
Lexa O, Schulmann K, Janousek V, et al. 2011. Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. Journal of Metamorphic Geology, 29(1): 79-102, doi: 10.1111/j.1525-1314. 2010. 00906. x.
[5]
Li Y H, Wu Q J, Tian X B, et al. 2006. Crustal structure beneath Qiangtang and Lhasa terrane from receiver function. Acta Seismol. Sin., 19(6): 633-642, doi: 1000-9116(2006)06-0633-10.
[6]
Tseng T, Cheng W, Nowack R L. 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys. Res. Lett., 36, L24304, doi: 10.1029/2009GL040457,2009.
[7]
Turcotte D L, Schubert G. 2002. Geodynamics. New York: Cambridge University Press.
[8]
Batchelor G K. 2000. Introduction to Fluid Dynamics. New York: Cambridge University Press.
[9]
Beaumont C, Jamieson R A, Nguyen M H, et al. 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J. Geophys. Res., 109, B06406, doi: 10.1029/2003JB002809.
[10]
Beaumont C, Jamieson R A, Nguyen M H, et al. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414(6865): 738-742, doi: 10. 1038/414738a.
[11]
Bürgmann R, Dreson G. 2008. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci., 36: 531-567, doi: 10.1146/annurev earth. 36. 031207.124326.
[12]
Clark M K, Royden L H. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706, doi: 10.1130/0091-7613(2000)28.
[13]
Flesch L M, Haines A J, Holt W E. 2001. Dynamics of the India-Eurasia collision zone. J. Geophys. Res., 106(B8): 16435-16460, doi: 10.1029/2001JB000208.
[14]
Flesch L M, Holt W E, Silver P G, et al. 2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth Planet. Sci. Lett., 238(1-2): 248-268, doi: 10.1016/j. epsl. 2005.06.023.
[15]
Gao R, Chen C, Lu Z W, et al. 2013. New constraints on crustal structure and Moho topography in central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics, 606: 160-170, doi: 10.1016/j. tecto. 2013. 08. 006.
[16]
Godin L, Grujic D, Law R D, et al. 2006. Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction.//Law R D, Searle P, Godin L. Channel flow, ductile extrusion and exhumation in continental collision zones, Geological Society, London, Special Publications, 268: 1-23.
[17]
Grujic D. 2006. Channel flow and continental collision tectonics: an overview.//Law R D, Searle P, Godin L. Channel flow, ductile extrusion and exhumation in continental collision zones, Geological Society, London, Special Publications, 268: 25-37.
[18]
Haines S S, Klemperer S L, Brown L, et al. 2003. INDEPTH III seismic data: from surface observations to deep crustal pro-cesses in Tibet. Tectonics, 22(1): 1-18, doi: 10.1029/2001TC001305.
[19]
Hilley G E, Bürgmann R, Zhang P Z, et al. 2005. Bayesian inference of plastosphere viscosities near the Kunlun Fault, northern Tibet. Geophysical Research Letters, 32, L01302, doi: 10.1029/2004GL021658.
[20]
Hirn A, Lepine J C, Jobert G, et al. 1984b. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307: 23-25, doi: 10.1038/307023a0.
[21]
Jamieson R A, Unsworth M J, Harris N B W, et al. 2011. Crustal melting and the flow of mountains. Elements, 7(4): 253-260, doi: 10.2113/gselements.7.4.253.
[22]
Qiu J. 2013. China''s exquisite look at earth''s rocky husk wins raves. Science, News & Analysis, 341(6141): 20.
[23]
Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788-790, doi: 10. 1126/science.276.5313.788.
[24]
Schulmann K, Lexa O, ?típská P, et al. 2008. Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? Journal of Metamorphic Geology, 26(2): 273-297, doi:10. 1111/j. 1525-1314. 2007 00755. x.
[25]
Searle M. 2013. Crustal melting, ductile flow, and deformation in mountain belts: Cause and effect relationships. Lithosphere, 5(6): 547-554. doi: 10.1130/RF. L006. 1.,
[26]
Shen F, Royden L H, Burchfiel B C. 2001. Large-scale crustal deformation of the Tibetan Plateau. J. Geophys. Res., 106(B4): 6793-6816, doi: 10.1029/2000JB900389.
[27]
Shi D N, Shen Y, Zhao W J, et al. 2009. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan plateau. Earth Planet. Sci. Lett., 288: 329-334, doi: 10. 1016/j. epsl. 2009. 09. 036.
[28]
Teng J W, Ruan X M, Zhang Y Q, et al. 2012. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau. Acta Petrologica Sinica (in Chinese), 28(12): 4077-4100.
[29]
Teng J W. 2005. The Exchange of Substance and Energy and Dynamic Process in the Earth Interior.//The 100 crossing-subject problems in 21st century (in Chinese). Beijing: Science Press, 327-338.
[30]
Teng J W, Bai D H, Yang H, et al. 2008. Deep processes and dynamic responses associated with the Wenchuan Ms8.0 earthquake of 2008. Chinese J. Geophys. (in Chinese), 51(5): 1385-1402.
[31]
Wang X F, He J K. 2012. Channel flow of the lower crust and its relation to large-scale tectonic geomorphology of the eastern Tibetan Plateau. Science in China (Series D), 55(8): 1383-1390.
[32]
Yang H, Teng J W, Pi J L. 2013. Numerical simulation on the study of the geodynamical condition about the channel flow model in Tibetan plateau. Chinese J. Geophys. (in Chinese), 56(8): 2625-2635,doi: 10.6038/cjg20130812.
[33]
Zhang P Z. 2008. The present day''s deformation, strain distribution and deep dynamic process on the Western Sichuan, Eastern Tibetan Plateau. Science in China (Series D) (in Chinese), 38(9): 1041-1056.
[34]
Zhang Z J, Deng Y F, Teng J W, et al. 2011a. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 40(4): 977-989, doi: 10. 1016/j. jseaes. 2010.03. 010.
[35]
Zhang Z J, Klemperer S L, Bai Z M, et al. 2011b. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana, 19(4): 994-1007, doi: 10.1016/j. gr. 2010. 09. 008.
[36]
Zhong S J. 1997. Dynamics of crustal compensation and its influence on crustal isostasy. Journal of Geophysical Research, 102(15): 15287-15299, doi: 10.1029/97JB00956.