全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国南海海域北部地区现今地应力实测及综合分析研究

DOI: 10.6038/cjg20140813, PP. 2518-2529

Keywords: 南海北部,地应力,水压致裂,FMI,有限元模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

南海北部区域现今地应力场的状态和分布特征是进行海洋资源开发、地质环境和工程安全评价的主要参考依据,也是地球动力学研究的主要内容之一.由于受到测量技术水平和自然条件等因素的影响,整个南海海域的地应力研究程度还比较低,有待于对该区域的地应力场的状态和控制因素进行较深入和细致的研究.原地地应力测量是直接获取地壳浅表层现今主应力大小和方向特征的有效途径,同时利用海上油气田测井FMI资料能够有效地提取地应力信息.结合区域构造环境,在实测地应力约束条件下,数值模拟方法能够有效地推测区域地应力的状态和分布特征.在海南省乐东县开展了水压致裂原地地应力测量,测量获得的最大主应力方向区间为NW-NWW向.根据Byerlee准则判别,钻孔附近的地应力远远小于引起断层活动地应力值的下限,钻孔邻近区域的断层活动性较弱.对南海北部边缘海盆地有限的FMI测井资料进行地应力解译,获得莺歌海的最大主应力优势方位为NW-NNW向,琼东南的最大主应力优势方位为NWW向.在对南海海域北部区域的板块构造环境和地球动力学背景分析的基础上,以上述地应力观测数据以及震源机制解资料为约束,对该区域现今地应力场进行了数值模拟分析,模拟结果表明,由于受印度板块、菲律宾板块和欧亚板块不同程度的影响,南海北部区域的地应力分布特征呈现了不同区域分化的趋势.在靠近台湾岛区域,主要受到菲律宾板块与欧亚板块发生碰撞的影响,最大主应力方向为近E-W向;沿着滨海海岸带向西,由于受到欧亚板块在马尼拉海沟向下俯冲形成的拉伸作用,最大主应力的方向逐渐转换为S-N向、NW向.

References

[1]  Hall R, van Hattum M W A, Spakman W. 2008. Impact of India-Asia collision on SE Asia: the record in Borneo. Tectonophysics, 451(1-4): 366-389.
[2]  Hsu Y J, Yu S B, Song T R A, et al. 2012. Plate coupling along the Manila subduction zone between Taiwan and northern Luzon. Journal of Asian Earth Sciences, 51: 98-108.
[3]  Jaeger J C, Cook N G W, Zimmerman R. 2009. Fundamentals of Rock Mechanics. New York: John Wiley & Sons.
[4]  Ku C Y, Hsu S K. 2009. Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon islands. Tectonophysics, 466(3-4): 229-240.
[5]  Lee T Y, Lawver L A. 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251: 85-138.
[6]  Li F Q, Liu G X. 1986. In situ stress measurements, stress state of the upper crust and earthquake. China Earthquake (in Chinese), 2(1): 50-55.
[7]  Li Y X, Zhang J H, Zhou W, et al. 2010. Current tectonic movement of South China sea and its surrounding areas. Journal of Geodesy and Geodynamics, 30(3): 10-16.
[8]  Lin C S, Tang Y, Tan Y H. 2009. Geodynamic mechanism of dextral strike-slip of the western edge faults of the South China Sea. Acta Oceanologica Sinica (in Chinese), 31(1): 159-167.
[9]  Lithgow-Bertelloni C, Guynn J H. 2004. Origin of the lithospheric stress field. J. Geophys. Res., 109, B01408, doi: 10. 1029/2003JB002467.
[10]  Pautot G, Rangin C. 1989. Subduction of the South China Sea axial ridge below Luzon (Philippines). Earth and Planetary Science Letters, 92(1): 57-69.
[11]  Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. J. Geophys. Res., 93(B12): 15085-15117.
[12]  Qiu X L, Liu Y X. 1989. A study of the modern tectonic stress field of South China Sea and its vicinity. Tropic Oceanology (in Chinese), 8(2): 84-92.
[13]  Ren J Y, Lei C. 2011. Tectonic stratigraphic frame work of Yinggehai-Qiongdongnan Basin and its implication for tectonic province division in South China Sea. Chinese J. Geophys. (in Chinese), 54(12): 3303-3314, doi: 10.3969/J. ISSN. 0001-5733. 2011. 12. 028.
[14]  Rouchet J H. 1981. Stress fields, a key to oil migration. AAPG Bulletin, 65: 74-85.
[15]  Scholz C H. 2002. The Mechanics of Earthquakes and Faulting. NewYork: Cambridge University Press.
[16]  Shi Y L, Cao J L. 2008. Effective viscosity of China continental lithosphere. Earth Science Frontiers (in Chinese), 15(3): 82-95.
[17]  Sibson R H. 1994. Crustal stress, faulting and fluid flow.//Parnell J ed. Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins. Spec. Publs geol. Sot. Lond., 78: 69-84. doi: 10.1144/GSL.SP.1994.078.01.07.
[18]  Stephan J R, Blanchet R, Rangin C, et al. 1986. Geodynamic evolution of the Taiwan-Luzon-Mindoro belt since the Late Ecocene. Tectonophysics, 125(1-3): 245-268.
[19]  Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia. Geol. Soc. Spec. Publ., 19: 113-157.
[20]  Turcotte D L, Schubert G. 2002. Geodynamics (2nd Edition). New York: Cambridge University Press.
[21]  Wang J. 2012. Modern movement and deformation in the South China Sea show by GPS measurements and numerical simulation (in Chinese). Beijing: Graduate School of Chinese Academy of Science.
[22]  Wang P L, Lo C H, Chung S L, et al. 2000. Onset timing of left-lateral movement along the Ailao Shan-Red River Shear Zone: 40Ar/39Ar dating constraint from the Nam Dinh Area, north eastern Vietnam. Journal of Asian Earth Sciences, 18(3): 281-292.
[23]  Zhou D, Ru K, Chen H Z. 1995. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics, 251(1-4): 161-177.
[24]  Zhu S B, Shi Y L. 2006. Study the controls of the tectonic stress of China mainland. Science in China Series D: Earth Sciences (in Chinese), 36(12): 1077-1083.
[25]  Zoback M D. 2007. Reservoir Mechanics. New York: Cambridge University Press, 167-205.
[26]  Zoback M D. 2007. Reservoir Mechanics. New York: Cambridge University Press, 123-139.
[27]  Zoback M L. 1992. First- and second-order patterns of stress in the lithosphere: The world stress map project. J. Geophys. Res., 97(B8): 11703-11728.
[28]  Zoback M D, Healy J H. 1992. In-situ stress measurements to 3.5 km depth in Cajon Pass Scientific Research Bore-hole: implications for the mechanics of crustal faulting. J. Geophys. Res., 97 (B4): 5039-5057.
[29]  Zoback M D, Barton C A, Brudy M, et al. 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40: 1049-1076.
[30]  Zoback M D, Tsukahara H, Hickman S. 1985. Stress measurements in the vicinity of San Andreas fault: Implication for the magnitude of shear stress at depth. J. Geophys. Res., 85(B11): 6157-6173.
[31]  Bautista B C, Bautista M L P, Oike K, et al. 2001. A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339(3-4): 279-310.
[32]  Briais A, Patriat P, Tapponier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of South-east Asia. J. Geophys. Res., 98(B4): 6299-6328.
[33]  Byerlee J D. 1978. Friction of rocks. Pure and Applied Geophysics, 116(4-5): 615-626.
[34]  Chen Q C, Feng C J, Meng W, et al. 2012. Analysis of in situ stress measurements at the northeastern section of the Longmenshan Fault Zone after 5.12 Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 55(12): 3923-3932, doi: 10. 6038/j. issn. 0001 5733. 2012. 12. 005.
[35]  Fan T Y, Long C X, Yang Z Y, et al. 2012. Comprehensive modeling on the present crustal stress of China mainland with the viscoelastic spherical shell. Chinese J. Geophys. (in Chinese), 55(4): 1249-1260, doi: 10.6038/j. issn. 0001 5733.2012.40. 020.
[36]  Haimson B C, Cornet F H. 2003. ISRM suggested methods for rock stress estimation-Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics & Mining Sciences, 40(7-8): 1011-1020.
[37]  Liu B M, Xia B, Li X X. 2006. Southeastern extension of the Red River fault zone(RRFZ) and its tectonic evolution significance in western South China Sea. Science in China: Series D Earth Sciences, 49(8): 839-850.
[38]  Liu Y X, Zhan W H, Qiu X L et al. 1993. Study on recent tectonic stress field, recent crustal movement and crustal stability in South China Sea and its adjacent area. South China Journal of Seismology (in Chinese), 13(1): 11-21.
[39]  Luan X W, Zhang L. 2009. Tectonic evolution modes of south China sea: passive spreading under complex actions. Marine Geology & Quaternary Geology, 29(6): 59-74.
[40]  Meng W, Chen Q C, Du J J, et al. 2012. In site stress measurement in Singapore. Chinese J. Geophys. (in Chinese), 55(8): 2611-2619, doi: 10. 6038/j. issn. 0001 5733. 2012. 08. 012.
[41]  Wu H L, Wang X F, Ma Y S, et al. 1999. Theory and method of studying hydrocarbon migration driven by tectonic stress field. Acta Petrolei Sinica, 20(5): 7-12.
[42]  Wu M L, Liao C T. 2000. Stress measurements and study of stability of the Damao tunnel. Journal of Geomechanics (in Chinese), 6(2): 71-76.
[43]  Wu M L, Zhang C S, Liao C T, et al. 2005. The recent state of stress in the central Qinghai-Tibet Plateau according to in-situ stress measurements. Chinese J. Geophys. (in Chinese), 48(2): 327-332.
[44]  Wu M L, Ma Y S, Zhang C S, et al. 2008. In situ stress measurement and tectonic stress field study in the region of Lanzhou-Maqu. Chinese J. Geophys. (in Chinese), 51(5): 1468-1474.
[45]  Xie F R, Cui X F, Zhao J T, et al. 2004. Regional division of the recent tectonic stress field in China and adjacent areas. Chinese J. Geophys. (in Chinese), 47(4): 654-662.
[46]  Xu H L, Ye C M, Qiu X L, et al. 2010. Studies on the Binhai fault zone in the northern south China sea by the deep geophysical exploration and its seismogenic structure. South China Journal of Seismology (in Chinese), 30(S1): 10-18.
[47]  Yang T F, Lee T, Chen C H et al. 1996. A double island arc between Taiwan and Luzon: consequence of ridge subduction. Tectonophysics, 258(1-4): 85-101.
[48]  Yao B C, Qiu Y, Li T G. 1999. The strike-slip characters of western margin of South China Sea-Wan''an fault and its tectonic significances.//Yao B C, Qiu Y, Wu N Y, eds. Character of Geology Tectonic and Cenozoic Depostion in the Western South China Sea (in Chinese). Beijing: Geological Publishing House, 45-55.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133