[1] | Fang Z L. 2012. Reservoir Parameters Inversion Based on the Soild/Fluid Interaction Model (in Chinese). Beijing: Department of Mathematical Sciences, Tsinghua University.
|
[2] | Fu D D, He Q D. 2002. An improved genetic algorithm and its application in parameter inversion in anisotropic media. Geophysical Prospecting for Petroleum (in Chinese), 41(3): 293-298.
|
[3] | Goldberg D. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading. Boston: Addison-Wesley.
|
[4] | Jiang L X, Shi X J. 1998. Relation between wave velocity in sandstone and fluid content in porous medium under high frequency condition. OCG (in Chinese), 33(3): 355-362.
|
[5] | Kusum D, Manoj T Z. 2007. A new crossover operator for real coded genetic algorithms. Appl. Math. Comput., 188(1): 895-911.
|
[6] | Lu M H, Nie J X, Yang H Z. 2006. Inversion of P-wave Anisotropic Parameters from crosswell seismic data. Engineering Mechanics (in Chinese), 23(S1): 58-61.
|
[7] | Mak K L, Wong Y S, Wang X X. 2000. An adaptive genetic algorithm for manufacturing cell formation. Int. J. Adv. Manuf. Technol., 16(7): 491-497.
|
[8] | Marketos G, Best A I. 2010. Application of the BISQ model to clay squirt flow in reservoir sandstones. J. Geophys. Res., 115(B6): B06209.
|
[9] | Mavko G, Nur A. 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80(B11): 1444-1448.
|
[10] | Mavko G M, Nur A. 1979. Wave attenuation in partially saturated rocks. Geophysics, 44(2): 161-178.
|
[11] | Nie J X, Yang D H, Yang H Z. 2004. Wave dispersion and attenuation in partially saturated sandstones. Chinese Physics Letter, 21(3): 572-575.
|
[12] | Nie J X, Yang D H, Yang H Z. 2004. Inversion of reservoir parameters based on the BISQ model in partially saturated porous media. Chinese J. Geophys. (in Chinese), 47(6): 1101-1105.
|
[13] | Nie J X, Yang D H, Yang H Z. 2008. A generalized viscoelastic Biot/Squirt model for clay-bearing sandstones in a wide range of permeabilities. Applied Geophysics, 5(4): 249-260.
|
[14] | Nie J X, Yang D H, Ba J. 2010. Veolocity dispersion and attenuation of waves in low-porosity-permeability anisotropic viscoelastic media with clay. Chinese J. Geophys. (in Chinese), 53(2): 385-392.
|
[15] | Parra J O. 2000. Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy. Geophysics, 65(1): 202-210.
|
[16] | Plona T J. 1980. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett., 36(4): 259-261.
|
[17] | Srinivas M, Patnaik L M. 1994. Adaptive probabilities of crossover and mutation in genetic algorithms. Transactions on Systems, Man and Cybernetics, 24(4): 656-667.
|
[18] | Wang Z J, He Q D, Wang D L. 2008. The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model. Applied Geophysics, 5(1): 24-34.
|
[19] | Wang Z J. 2008. A Study of Numerical Simulation and Propagation Characteristics for 3D Two-Phase Orthotropic Medium Based on the BISQ Mechanism[Ph. D. Thesis]. Changchun: Jilin University.
|
[20] | Yang D H, Zhang Z J. 2000. Effects of the biot and the squirt-flow coupling interaction on anisotropic elastic waves. Chinese Science Bulletin, 45(23): 2130-2138.
|
[21] | Yang D H, Zhang Z J. 2002. Poroelastic wave equation including the Biot/Squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35(3): 223-245.
|
[22] | Yang K D, Yang D H, Wang S Q. 2002. Wave-field simulation base on the Biot/Squirt equation. Chinese J. Geophys. (in Chinese), 45(6): 853-861.
|
[23] | Yang K D, Song G J, Li J S. 2011. FCT compact difference simulation of wave propagation based on the biot and the squirt-flow coupling interaction. Chinese J. Geophys. (in Chinese), 54(5): 1348-1357.
|
[24] | Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity-Direct measurements. Geophysics, 71(1): N1-N9.
|
[25] | Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency Range. J. Acoust. Soc. Amer., 28(2): 168-178.
|
[26] | Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency Range. J. Acoust. Soc. Amer., 28(2): 179-191.
|
[27] | Bouzidi Y, Schmitt D R. 2009. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter. J Geophys Res, 114(B8): B08201.
|
[28] | Cheng Y F, Yang D H, Yang H Z. 2002. Biot/Squirt model in viscoelastic porous media. Chinese Physics Letter, 19(3): 445-448.
|
[29] | Christensen P M. 1982. Theory of Viscoelasticity: An Introduction, 2nd ed. New York: Academic Press.
|
[30] | Cui Z W, Wang K X, Cao Z L, et al. 2004. Slow waves propagation in BISQ poroelastic model. Acta Physica Sinica, 53(9): 3083-3089.
|
[31] | Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.
|
[32] | Dvorkin J, Nolen-Hoeksema R C, Nur A. 1994. The squirt-flow mechanism: Macroscopic description. Geophysics, 59(3): 428-438.
|