全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多种物理机制耦合作用下的储层介质参数反演研究

DOI: 10.6038/cjg20140826, PP. 2678-2686

Keywords: 黏弹性介质,BISQ模型,反演,遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

孔隙介质的黏弹性、孔隙流体的Biot流动和喷射流动是影响波传播的重要物理机制.本文分别基于弹性和黏弹性BISQ模型,利用自适应杂交遗传算法研究了多种物理机制耦合作用条件下储层介质参数反演.为了测试自适应杂交遗传算法的有效性,本文分别利用自适应杂交遗传算法和传统实数编码遗传算法对含有不同噪声的理论合成数据进行了反演试算.对比理论合成数据反演结果可知,自适应杂交遗传算法具有抗干扰能力强且收敛速度快的特点,是一种有效的储层介质参数反演方法.同时本文也利用不同频率尺度和不同温度条件下的P波和S波实测数据进行了联合反演.对比研究表明,黏弹性BISQ模型能够很好地解释不同频率尺度的波频散特征,不仅能够很好地预测P波速度,而且也能够很好地预测S波速度,从而证明了黏弹性BISQ模型能够准确地描述低频条件下的波频散.

References

[1]  Fang Z L. 2012. Reservoir Parameters Inversion Based on the Soild/Fluid Interaction Model (in Chinese). Beijing: Department of Mathematical Sciences, Tsinghua University.
[2]  Fu D D, He Q D. 2002. An improved genetic algorithm and its application in parameter inversion in anisotropic media. Geophysical Prospecting for Petroleum (in Chinese), 41(3): 293-298.
[3]  Goldberg D. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading. Boston: Addison-Wesley.
[4]  Jiang L X, Shi X J. 1998. Relation between wave velocity in sandstone and fluid content in porous medium under high frequency condition. OCG (in Chinese), 33(3): 355-362.
[5]  Kusum D, Manoj T Z. 2007. A new crossover operator for real coded genetic algorithms. Appl. Math. Comput., 188(1): 895-911.
[6]  Lu M H, Nie J X, Yang H Z. 2006. Inversion of P-wave Anisotropic Parameters from crosswell seismic data. Engineering Mechanics (in Chinese), 23(S1): 58-61.
[7]  Mak K L, Wong Y S, Wang X X. 2000. An adaptive genetic algorithm for manufacturing cell formation. Int. J. Adv. Manuf. Technol., 16(7): 491-497.
[8]  Marketos G, Best A I. 2010. Application of the BISQ model to clay squirt flow in reservoir sandstones. J. Geophys. Res., 115(B6): B06209.
[9]  Mavko G, Nur A. 1975. Melt squirt in the asthenosphere. J. Geophys. Res., 80(B11): 1444-1448.
[10]  Mavko G M, Nur A. 1979. Wave attenuation in partially saturated rocks. Geophysics, 44(2): 161-178.
[11]  Nie J X, Yang D H, Yang H Z. 2004. Wave dispersion and attenuation in partially saturated sandstones. Chinese Physics Letter, 21(3): 572-575.
[12]  Nie J X, Yang D H, Yang H Z. 2004. Inversion of reservoir parameters based on the BISQ model in partially saturated porous media. Chinese J. Geophys. (in Chinese), 47(6): 1101-1105.
[13]  Nie J X, Yang D H, Yang H Z. 2008. A generalized viscoelastic Biot/Squirt model for clay-bearing sandstones in a wide range of permeabilities. Applied Geophysics, 5(4): 249-260.
[14]  Nie J X, Yang D H, Ba J. 2010. Veolocity dispersion and attenuation of waves in low-porosity-permeability anisotropic viscoelastic media with clay. Chinese J. Geophys. (in Chinese), 53(2): 385-392.
[15]  Parra J O. 2000. Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy. Geophysics, 65(1): 202-210.
[16]  Plona T J. 1980. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett., 36(4): 259-261.
[17]  Srinivas M, Patnaik L M. 1994. Adaptive probabilities of crossover and mutation in genetic algorithms. Transactions on Systems, Man and Cybernetics, 24(4): 656-667.
[18]  Wang Z J, He Q D, Wang D L. 2008. The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model. Applied Geophysics, 5(1): 24-34.
[19]  Wang Z J. 2008. A Study of Numerical Simulation and Propagation Characteristics for 3D Two-Phase Orthotropic Medium Based on the BISQ Mechanism[Ph. D. Thesis]. Changchun: Jilin University.
[20]  Yang D H, Zhang Z J. 2000. Effects of the biot and the squirt-flow coupling interaction on anisotropic elastic waves. Chinese Science Bulletin, 45(23): 2130-2138.
[21]  Yang D H, Zhang Z J. 2002. Poroelastic wave equation including the Biot/Squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35(3): 223-245.
[22]  Yang K D, Yang D H, Wang S Q. 2002. Wave-field simulation base on the Biot/Squirt equation. Chinese J. Geophys. (in Chinese), 45(6): 853-861.
[23]  Yang K D, Song G J, Li J S. 2011. FCT compact difference simulation of wave propagation based on the biot and the squirt-flow coupling interaction. Chinese J. Geophys. (in Chinese), 54(5): 1348-1357.
[24]  Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity-Direct measurements. Geophysics, 71(1): N1-N9.
[25]  Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency Range. J. Acoust. Soc. Amer., 28(2): 168-178.
[26]  Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency Range. J. Acoust. Soc. Amer., 28(2): 179-191.
[27]  Bouzidi Y, Schmitt D R. 2009. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter. J Geophys Res, 114(B8): B08201.
[28]  Cheng Y F, Yang D H, Yang H Z. 2002. Biot/Squirt model in viscoelastic porous media. Chinese Physics Letter, 19(3): 445-448.
[29]  Christensen P M. 1982. Theory of Viscoelasticity: An Introduction, 2nd ed. New York: Academic Press.
[30]  Cui Z W, Wang K X, Cao Z L, et al. 2004. Slow waves propagation in BISQ poroelastic model. Acta Physica Sinica, 53(9): 3083-3089.
[31]  Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.
[32]  Dvorkin J, Nolen-Hoeksema R C, Nur A. 1994. The squirt-flow mechanism: Macroscopic description. Geophysics, 59(3): 428-438.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133