全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2003-2011年平流层顶抬升事件的SABER/TIMED观测

DOI: 10.6038/cjg20140808, PP. 2465-2472

Keywords: 抬升的平流层顶,平流层突然增温,重力波,SABER

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2003-2011年的SABER/TIMED温度数据观测发现,在2006年、2009年和2010年北半球高纬(70°N)的冬季(1-3月)发生了“平流层顶抬升”.在这3次事件中,1月末-2月初的~50km和~80km高度处分别出现了温度的极大值~260K和~230K,即平流层顶的高度突然由原来的50km左右上升至80km左右,这就是平流层顶抬升事件;随着时间的推移,抬升的平流层顶的高度逐渐下降直至恢复到原有位置,与此同时其温度由~230K上升至~260K.值得注意的是,虽然在极区的每年冬天都发生平流层突然增温事件,但是只在伴随着极涡分裂的平流层突然增温事件后出现平流层顶抬升.此外,在发生平流层顶抬升事件的冬季里,高纬的重力波活动在1月末-2月初的~80km高度处突然增强,对应着平流层顶的抬升时间和高度;在2月份之后,重力波活动在75km以下逐渐增强、在75km以上逐渐减弱,同时抬升的平流层顶也不断下降.通过重力波活动与平流层顶抬升事件的相关性分析,表明重力波活动可能对平流层顶的抬升有重要影响.

References

[1]  De la Torre L, Garcia R R, Barriopedro D, et al. 2012. Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model. J. Geophys. Res., 117, doi:10.1029/2011JD016840.
[2]  Ern M, Preusse P, Gille J C, et al. 2011. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res., 116(D19): D19107, doi:10.1029/2011JD015821.
[3]  France J A, Harvey V L, Randall C E, et al. 2012a. A climatology of stratopause temperature and height in the polar vortex and anticyclones. J. Geophys. Res., 117(D6): D06116, doi:10.1029/2011JD016893.
[4]  France J A, Harvey V L, Alexander M J, et al. 2012b. High Resolution Dynamics Limb Sounder observations of the gravity wave-driven elevated stratopause in 2006. J. Geophys. Res., 117(D20): D20108, doi:10.1029/2012JD017958.
[5]  France J A, Harvey V L. 2013. A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. J. Geophys. Res., 118(5): 2241-2254, doi:10.1002/jgrd.50218.
[6]  Garcia C M, Lopez P M, Marshall B T, et al. 2008. Errors in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters. J. Geophys. Res., 113(D24): D24106, doi:10.1029/2008JD010105.
[7]  Goncharenko L P, Hsu V W, Brum C G M, et al. 2013. Wave signatures in the midlatitude ionosphere during a sudden stratospheric warming of January 2010. J. Geophys. Res., 118(1): 472-487, doi:10.1029/2012JA018251.
[8]  Harvey V L, Hitchman M H. 1996. A climatology of the Aleutian High. J. Atmos. Sci., 53(14): 2088-2102, doi:10.1175/1520-0469.
[9]  Hitchman M H, Gille J C, Rodgers C D, et al. 1989. The separated polar winter stratopause: A gravity wave driven climatological feature. J. Atmos. Sci., 46: 410-422.
[10]  Kanzawa H. 1989. Warm stratopause in the Antarctic winter. J. Atmos. Sci., 46: 435-438, doi:10.1175/1520-0469.
[11]  Manney G L, Kruger K, Pawson S, et al. 2008. The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res., 113(D11): D11115, doi:10.1029/2007JD009097.
[12]  Manney G L, Schwartz M J, Krüger K, et al. 2009. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett., 36(12): L12815, doi:10.1029/2009GL038586.
[13]  Mertens C J, Schmidlin F J, Goldberg R A, et al. 2004. SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophys. Res. Lett., 31(3): L03105.
[14]  Orsolini Y J, Urban J, Murtagh D P, et al. 2010. Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature satellite observations by the Odin Sub-Millimeter. J. Geophys. Res., 115(D12): D12305, doi:10.1029/2009JD013501.
[15]  Pancheva D, Mukhtarov P, Mitchell N J, et al. 2008. Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J. Geophys. Res., 113(D12): D12105, doi:10.1029/2007JD009011.
[16]  Preusse P, Dornbrack A, Eckermann S D, et al. 2002. Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study. J. Geophys. Res., 107(D23): 8178, doi:10.1029/2001JD000699.
[17]  Ren S, Polavarapu S, Beagley S R, et al. 2011. The impact of gravity wave drag on mesospheric analyses of the 2006 stratospheric major warming. J. Geophys. Res., 116(D19): D19116, doi:10.1029/2011JD015943.
[18]  Shuai J, Zhang S D, Huang C M, et al. 2014. Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations. Sci. China (Series E), 57(5): 998-1009.
[19]  Thayer J P, Greer K, Harvey V L. 2010. Front-like behavior in the Arctic wintertime upper stratosphere and lower mesosphere. J. Geophys. Res., 115: D00N04, doi:10.1029/2010JD014278.
[20]  Thurairajah B, Collins R L, Harvey V L, et al. 2010a. Gravity wave activity in the Arctic stratosphere and mesosphere during the 2007-2008 and 2008-2009 stratospheric sudden warming events. J. Geophys. Res., 115: D00N06, doi:10.1029/2010JD014125.
[21]  Thurairajah B, Collins R L, Harvey V L, et al. 2010b. Rayleigh lidar observations of reduced gravity wave activity during the formation of an elevated stratopause in 2004 at Chatanika, Alaska (65°N, 147°W). J. Geophys. Res., 115(D13): D13109, doi:10.1029/2009JD013036.
[22]  Thurairajah B, Collins R L, Harvey V L, et al. 2010c. Rayleigh lidar observations of reduced gravity wave activity during the formation of an elevated stratopause in 2004 at Chatanika, Alaska (65°N, 147°W). J. Geophys. Res., 115(D13): D13109, doi:10.1029/2009JD013036.
[23]  Wang L, Alexander M J. 2009. Gravity wave activity during stratospheric sudden warmings in the 2007-2008 Northern Hemisphere winter. J. Geophys. Res., 114(D18): D18108, doi:10.1029/2009JD011867.
[24]  Waugh D W, Randel W J. 1999. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci., 56(11): 1594-1613.
[25]  Wright C J, Osprey S M, Barnett J J, et al. 2010. High Resolution Dynamics Limb Sounder measurements of gravity wave activity in the 2006 Arctic stratosphere. J. Geophys. Res., 115(D2): D02105, doi:10.1029/2009JD011858.
[26]  Yamashita C, England S L, Immel T J, et al. 2013. Gravity wave variations during elevated stratopause events using SABER observations. J. Geophys. Res., 118(11): 5287-5303, doi:10.1002/jgrd.50474.
[27]  Yamazaki Y, Richmond A D, Liu H X, et al. 2012. Sq current system during stratospheric sudden warming events in 2006 and 2009. J. Geophys. Res., 117(A12): A12313, doi:10.1029/2012JA018116.
[28]  Zhang S D, Yi F, Wang J F, et al. 2001. A numerical study on saturation mechanism of gravity wave in mesosphere. Chinese J. Geophys. (in Chinese), 44(4): 454-460.
[29]  Siskind D E, Eckermann S D, Coy L, et al. 2007. On recent interannual variability of the Arctic winter mesosphere: Implications for tracer descent. Geophys. Res. Lett., 34: L09806, doi:10.1029/2007GL029293.
[30]  Siskind D E, Eckermann S D, McCormack J P, et al. 2010. Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings. J. Geophys. Res., 115(D3): D00N03, doi:10.1029/2010JD014114.
[31]  Chandran A, Collins R L, Garcia R R, et al. 2011. A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model. Geophys. Res. Lett., 38(8): L08804.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133