全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

卫星-地基-模式统一的自动观测云分类原则和标准的研究

DOI: 10.6038/cjg20140805, PP. 2433-2441

Keywords: 云分类,地基观测,卫星观测,数值预报模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着空基、地基云状观测自动化进程的推进,国际通用的人工观测云分类标准不再适用于自动观测.本文提出了适用于自动观测的卫星观测、地基观测和数值预报模式统一的云分类原则和分类标准,依据大气代表性原则、仪器观测可行性原则、历史继承性原则和可扩展性原则,不考虑云的高度,沿用形态学和发生学理论,将云分为卷云、层状云、波状云和积状云4属,更细分为薄卷云、密卷云、波云、雨波云、层云、雨层云、浅积云和深积云8类,列出了各类云特征的定性描述,为自动观测、预报保障和模式评估提供参考.

References

[1]  Kannala J, Brandt S S. 2006. A generic camera model and calibration method for conventional, wide-angle, and 155 fish-eye lenses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8): 1335-1340.
[2]  Klein S A, Jakob C. 1999. Validation and sensitivities of frontal clouds simulated by the ECMWF model. Monthly Weather Review, 127(10): 2514-2531.
[3]  Lee J, Weger R C, Sengupta S K. 1990. A neural network approach to cloud classification. IEEE Transactions on Geosciences and Remote Sensing, 28(5): 846-855.
[4]  Li J, Menzel W P, Yang Z, et al. 2003. High-Spatial-Resolution surface and Cloud-Type classification from MODIS multispectral band measurements. Journal of Applied Meteorology, 42(2): 204-226.
[5]  Liu L, Sun X J, Chen F, et al. 2010. Cloud classification based on structure features of infrared images. Journal of Atmospheric and Oceanic Technology, 28(3): 410-417.
[6]  Liu L, Sun X J, Chen F, et al. 2013. Comparison of cloud properties from ground-based infrared cloud measurement and visual observations. Journal of Atmospheric and Oceanic Technology, 30(6): 1171-1179.
[7]  Liu Z G, Li Y X, Huang F. 2007a. Cloud detection of MODIS satellite images based on dynamical cluster. Remote Sensing Information (in Chinese), (4): 33-35.
[8]  Liu Z G, Li Y X, Wang C Y. 2007b. An improved cloud classification method based on maximum likelihood for MODIS images. Journal of Computer Research and Development (in Chinese), 44(S2): 12-16.
[9]  Ren J Q, Yan W, Yang H L, et al. 2011. Cloud classification algorithm for cloudSat satellite based on fuzzy logic method. Journal of PLA University of Science and Technology (Nature Science Edition) (in Chinese), 12(1): 90-96.
[10]  Rossow W B, Schiffer R A. 1991. ISCCP cloud data products. Bulletin of the American Meteorological Society, 72(1): 2-20.
[11]  Sassen K, Wang Z. 2008. Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophysical Research Letters, 35(4): doi: 10. 1029/2007GL032591.
[12]  Yu F, Chen W M. 1994. Research on the cloud classification for tile bi-spectrum cloud picture. Journal of Nanjing Institute of Meteorology (in Chinese), 17(1): 117-125.
[13]  Wang Z, Sassen K. 2002. Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparisons with in situ data. Journal of Applied Meteorology, 41: 218-229.
[14]  Webb M, Senior C, Bony S, et al. 2001. Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dynamics, 17(12): 905-922.
[15]  Wu D L, Ackerman S A, Davies R, et al. 2009. Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat. Geophysical Research Letters, 36(9): doi: 10.1029/2009GL037464.
[16]  Zhou Q, Zhao F S, Gao W H. 2010. Rerieval of cloud radiative properties from FY-2C satellite data. Chinese Journal of Atmospheric Sciences (in Chinese), 34(4): 827-842.
[17]  Bankert R L. 1994. Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural-network. Journal of Applied Meteorology, 33(8): 909-918.
[18]  Christodoulou C I, Michaelides S C, Pattichis C S. 2003. Multifeature texture analysis for the classification of clouds in satellite imagery. IEEE Transactions on Geosciences and Remote Sensing, 41(11): 2662-2668.
[19]  Derrien M, Gleau H Le. 1999. Cloud classification extracted from AVHRR and GOES imagery. EUMETSAT Meteorological Satellite Data User''s Conf., 545-553.
[20]  Desbois M, Seze G, Szejwach G. 1982. Automatic classification of clouds on METEOSAT imagery: Application to high-level clouds. Journal of Applied Meteorology, 21(3): 401-412.
[21]  Gao T C, Liu L, Zhao S J, et al. 2010. The actuality and progress of whole sky cloud sounding techniques. Journal of Applied Meteorological Science (in Chinese), 21(1): 101-109.
[22]  Hahn C J, Rossow W B, Warren S G. 2001. ISCCP cloud properties associated with standard cloud types identified in individual surface observations. Journal of Climate, 14(1): 11-28.
[23]  Haladay T, Stephens G. 2009. Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations. Journal of Geophysical Research, 114, doi: 10.1029/2008JD010675.
[24]  Haynes J M, Marchand R T, Luo Z, et al. 2007. A multi-purpose radar simulation package: Quickbeam. Bulletin of the American Meteorological Society, 88(11): 1723-1727.
[25]  Huo J, Lu D R. 2009. Cloud determination of all-sky images under low-visibility conditions. Journal of Atmospheric and Oceanic Technology, 26(10): 2172-2181.
[26]  Seiz G, Baltsavias E P, Gruen A. 2002. Cloud mapping from the ground: Use of photogrammetric methods. Photogrammetric Engineering & Remote Sensing, 68(9): 941-951.
[27]  Singh M, Glennen M. 2005. Automated ground-based cloud recognition. Pattern Analysis Application, 8(3): 258-271.
[28]  Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the Advanced Research WRF Version 2. NCAR Tech Notes-468+STR.
[29]  Smith S, Toumi R. 2008. Measuring cloud cover and brightness temperature with a ground-based thermal infrared camera. Journal of Applied Meteorology and Climatology, 47(2): 683-693.
[30]  Sun X J, Liu L, Gao T C, et al. 2009a. Classification of whole sky infrared cloud image based on the LBP operator. Transactions of Atmospheric Sciences (in Chinese), 32(4): 490-497.
[31]  Sun X J, Liu L, Gao T C, et al. 2009b. Cloud classification of the whole sky infrared image based on the fuzzy uncertainty texture spectrum. J. Chin. Appl. Meteor. Sci. (in Chinese), 20(2): 157-163.
[32]  Tian B, Shaikh M A, Azimi-Sadjadi M R, et al. 1999. A study of cloud classification with neural networks using spectral and textural features. IEEE Transactions on Neural Networks, 10(1): 138-151.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133