全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电离层残差对掩星反演温度精度的影响

DOI: 10.6038/cjg20140802, PP. 2404-2414

Keywords: 掩星,温度,电离层残差,射线追踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以MSIS90大气模式和3DNeUoG电离层模式为大气背景,用三维射线追踪法模拟研究了太阳活动强度、地方时、掩星平面方位角对弯曲角电离层残差和温度电离层残差的影响,以及电离层残差对全球日平均温度的影响.结果表明:电离层残差是平流层顶部(35~50km)和中间层底部(50~70km)掩星大气温度反演的主要误差.在太阳活动活跃期,电离层残差对单一掩星事件的平流层顶部平均温度的影响可达1.8K,中间层底部平均温度的影响可达7K;对全球日平均温度的影响在平流层顶可达-0.6K,在70km高度处可达1.2K.发展新的电离层改正方法或电离层残差修正算法对提高掩星大气反演精度和全球气候监测意义重大.

References

[1]  Kumar R, Bhowmick S A, Babu K N. 2011. Relative calibration using natural terrestrial targets: A preparation towards Oceansat-2 scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 49(6): 2268-2273.
[2]  Kuo Y H, Schreiner W S, Wang J, et al. 2005. Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32(5):L0518 1-4.
[3]  Kursinski E R, Hajj G A, Schofield J T, et al. 1997. Observing earth''s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102(D19): 23429-23465.
[4]  Lee S R. 2010. Overview of KOMPSAT-5 program, mission, and system.//2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI: IEEE, 797-800.
[5]  Leitinger R, Titheridge J E, Kirchengast G, et al. 1996. A simple global empirical model for the F layer of the ionosphere. Kleinheubacher Berichte, 39: 679-704.
[6]  Loiselet M, Stricker N, Menard Y. 2000. GRAS-Metop''s GPS-based atmospheric sounder. ESA Bull., 102: 38-44.
[7]  Puviarasan N, Giri R K, Ranalkar M. 2011. Precipitable water vapour monitoring using ground based GPS system. Mausam, 61: 203-212.
[8]  Rieder M J, Kirchengast G. 2001. Error analysis and characterization of atmospheric profiles retrieved from GNSS occultation data. J. Geophys. Res., 106(D23): 31755-31770.
[9]  Scherllin-Pirscher B, Steiner A K, Kirchengast G, et al. 2011. Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation. Atmospheric Measurement Techniques, 4(2): 1875-1890.
[10]  Steiner A K, Lackner B C, Ladst?dter F, et al. 2011. GPS radio occultation for climate monitoring and change detection. Radio Science, 46(6): 1-17.
[11]  Syndergaard S. 2000. On the ionosphere calibration in GPS radio occultation measurements. Radio Science, 35(3): 865-883.
[12]  Thies B, Bendix J. 2011. Satellite based remote sensing of weather and climate: recent achievements and future perspectives. Meteorological Applications, 18(3): 262-295.
[13]  Wickert J, Beyerle G, K?nig R, et al. 2005. GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding. Annales Geophysicae, 23(3): 653-658.
[14]  Wickert J, Schmidt T, Beyerle G, et al. 2004. The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles. J. Meteorol. Soc., 82(1B): 381-395.
[15]  Anthes R A, Rocken C, Kuo Y H, et al. 2000. Applications of COSMIC to meteorology and climate. Terr. Atmos. Ocean. Sci., 11(1): 115-156.
[16]  Bissiri S, Hajj G A. 1993. Higher-order ionospheric effects on the GPS observables and means of modeling them. Manuscripta Geodaetica, 18(2): 280-289.
[17]  Buckreuss S, Werninghaus R, Pitz W. 2009. The German satellite mission TerraSAR-X. Aerospace and Electronic Systems Magazine, IEEE, 24(11): 4-9.
[18]  Gobiet A, Kirchengast G. 2004. Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility. J. Geophys. Res., 109(D24), doi: 10.1029/2004JD005117.
[19]  Gong X Y, Hu X, Wu X C, et al. 2007. Preliminary analysis of error characteristics in atmospheric inversion of GPS radio occultation. Chinese J. Geophys. (in Chinese), 50(4): 1017-1029.
[20]  Hajj G A, Ao C O, Lijima B A, et al. 2004. CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109(D6): 1-24.
[21]  Jiang H, Huang C. 2003. Simulation study on the effects of orbit error of low earth orbiter on neutral atmospheric phase delay. Chinese J. Geophys. (in Chinese), 46(2): 167-170.
[22]  Ware R, Exner M, Feng D, et al. 1996. GPS Sounding of the atmosphere from Low Earth Orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77(1): 19-40.
[23]  Zeng Z, Hu X, Zhang X X, et al. 2004. Inversion of ionospheric GPS occultation data. Chinese J. Geophys. (in Chinese), 47(4): 578-583.
[24]  Zhang K, Fu E, Silcock D, et al. 2011. An investigation of atmospheric temperature profiles in the Australian region using collocated GPS radio occultation and radiosonde data. Atmospheric Measurement Techniques, 4(10): 2087-2092.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133