全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地形效应和局部地质构造对计算同震形变的影响——以2011年日本东北大地震(Mw9.0)为例

DOI: 10.6038/cjg20140814, PP. 2530-2540

Keywords: 地震位错,有限单元,数值模拟,同震形变,地形效应,局部地质构造

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用二维有限元数值模拟方法,以2011年日本东北Mw9.0级大地震为例,探讨了地形和局部地质构造等物理因素对计算同震形变的影响.计算中使用了双节点技术构成断层滑动面,同时考虑了均质、层状、地形以及俯冲板片等不同构造介质模型.对不同介质模型分别计算并进行比较,以便考察不同物理因素的影响.数值计算结果表明:海沟地形对计算同震形变的影响非常大,局部地质构造的影响也很明显,而同时考虑地形和局部地质构造所产生的影响要比仅考虑地形效应更大,其影响在水平方向和垂直方向上分别达到-1.78~0.8m和-1.4~0.64m,相应的百分比分别为34%和92%.这些结果表明起伏较大的地形(特别是海山)及局部地质构造对计算同震形变的影响都不容忽略,它们均能被现代大地测量技术(如GPS、InSAR等)观测到,在计算同震形变或进行断层反演时应该加以考虑.

References

[1]  Wang R J. 2005b. The dislocation theory: a consistent way for including the gravity effect in (visco) elastic plane-earth models. Geophysical Journal International, 161(1): 191-196, doi:10.1111/j.1365-246X.2005.02614.x.
[2]  Wang R J, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP-a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the visco-elastic-gravitational dislocation theory. Computers & Geosciences, 32(4): 527-541.
[3]  Yoshi T. 1979. A detailed cross-section of the deep seismic zone beneath northeastern Honshu, Japan. Tectonophysics, 55(3-4): 349-360.
[4]  Yoshioka S, Loo H Y, Mikumo T, et al. 1992. A model of post-seimic recovery induced by a Deep-Focus earthquake. Physics of the Earth and Planetary Interiors, 72(1-2): 83-98.
[5]  Zeng H R, Song H Z. 1999. Application of double-node finite element on seepage involving fault and fracture. Seismology and Geology (in Chinese), 21(3): 238-242.
[6]  Zhu G Z, Wang Q L. 2005. Modeling of asymmetric earthquake displacement field of vertical strike-slip fault by using double-node finite element technique. Journal of Seismological Research (in Chinese), 28(2): 189-192.
[7]  Dziewonski A M, Anderson D L. 1981. Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25(4): 297-356.
[8]  Fu G Y. 2007. Surface gravity changes caused by Tide-Generating potential and by internal dislocation in a 3-D heterogeneous earth. Japan: University of Tokyo.
[9]  Fu G Y, Sun W K. 2007. Effects of the lateral inhomogeneity in a spherical earth on gravity earth tides. Journal of Geophysical Research, 112(B6): B06409, doi: 10.1029/2006JB004512.
[10]  Hao J L, Wang W M, Yao Z X. 2011. Source process of the 2011 Mw9.0 Tohuko Japan earthquake. Science China Earth Science (in Chinese), 41(6): 745-749, doi:10.1007/s11430-011-4241-y.
[11]  Hayes G P. 2011. Rapid source characterization of the 2011 Mw9.0 of the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63(7): 529-534, doi:10.5047/eps.2011.05.012.
[12]  Hayes G P, Wald D J, Johnson R L. 2012. Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117(1): B01302, doi:10.1029/2011JB.008524.
[13]  Jiang H, Deng Z H, Gao X L, et al. 2013. Numerical modeling of earthquake generating processes in the Japan subduction slab. Chinese Journal of Geophysics (in Chinese), 56(7): 2303-2312, doi:10.6038/cjg20130717.
[14]  Lin X G, Sun W K, Zhang H, et al. 2013. A feasibility study of an FEM simulation used in co-seismic deformations: A case study of a dip-slip fault. Terrestrial, Atmospheric and Oceanic Sciences, 24(4): 637-647, doi:10.3319/TAO.2013.01.16.01 (TibXS).
[15]  Loo H Y, X L Gao, J X Sun, et al. 1992. Three-dimensional numerical modeling of earthquake migration along a northwestern Pacific subduction slab. Geophysical Research Letters, 19(3): 313-316.
[16]  Monastersky R. 2011. Giant shock rattles ideas about quake behaviour. Nature, 471(7338): 274, doi:10.1038/471274a.
[17]  Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4): 1135-1154.
[18]  Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2): 1018-1040.
[19]  Piersanti A, Spada G, Sabadini R, et al. 1995. Global post-seismic deformation. Geophysical Journal of International, 120(3): 544-566.
[20]  Piersanti A, Spada G, Sabadini R. 1997. Global post-seismic rebound of a viscoelastic Earth: Theory for finite faults and application to the 1964 Alaska earthquake. Journal of Geophysical Research, 102(B1): 477-492.
[21]  Pollitz F F. 1992. Post-seismic relaxation theory on the spherical Earth. Bulletin of the Seismological Society of America, 82(1): 422-453.
[22]  Pollitz F F. 1996. Coseismic deformation from earthquake faulting on a layered spherical earth. Geophysical Journal of International, 125(1): 1-14.
[23]  Ruff L, Kanamori H. 1980. Seismicity and the subduction process. Physics of the Earth and Planetary Interiors, 23(2): 240-252.
[24]  Sabadini R, Piersanti A, Spada G. 1995. Toroidal-poloidal partitioning of global Post-seismic deformation. Geophysical Research Letters, 22(8): 985-988.
[25]  Sabadini R, Vermeersen L L A. 1997. Influence of lithospheric and mantle stratification on global post-seismic deformation. Geophysical Research Letters, 24(16): 2075-2078.
[26]  Sato K, Minagawa N, Hyodo M, et al. 2007. Effect of elastic inhomogeneity on the surface displacements in the northeastern Japan: Base on three-dimensional numerical modeling. Earth Planets Space, 59(10): 1083-1093.
[27]  Sato K, Baba T, Hori T, et al. 2010. Afterslip distribution following the 2003 Tokachi-oki earthquake: An estimation based on the Green''s functions for an inhomogeneous elastic space with subsurface structure. Earth Planets Space, 62(12): 923-932.
[28]  Steketee J A. 1958a. On Volterra''s dislocations in a semi-infinite elastic medium. Canadian Journ-al of Physics, 36(2): 192-205.
[29]  Steketee J A. 1958b. Some geophysical applications of the elasticity theory of dislocations. Canadian Journal of Physics, 36(9): 1168-1198.
[30]  Stern R J. 2002. Subduction zones. Reviews of Geophysics, 40(4): 1012-1038, doi:10.1029/2001RG000108, 2002.
[31]  Sun W K. 1992. Potential and gravity changes raised by dislocations in spherically symmetric Earth models[Ph. D. Thesis]. Japan: University of Tokyo.
[32]  Sun W K, Okubo S. 1993. Surface potential and gravity changes due to internal dislocations in a spherical Earth-Ⅰ. Theory for a point dislocation. Geophysical Journal of International, 114(3): 569-592.
[33]  Sun W K, Okubo S, Vaníek P. 1996. Global displacements caused by point dislocations in a realistic Earth model. Journal of Geophysical Research, 101(B4): 8561-8577.
[34]  Sun W K, Okubo S. 1998. Surface potential and gravity changes due to internal dislocations in a spherical Earth-Ⅱ. Application to a finite fault. Geophysical Journal of International, 132(1): 79-88.
[35]  Sun W K, Okubo S. 2002. Effects of the earth''s spherical curvature and radial heterogeneity in dislocation studies-for a point dislocation. Geophysical Research Letters, 29(12): 461-464.
[36]  Sun W K. 2003. Asymptotic theory for calculating deformations caused by dislocations buried in a spherical earth: geoid change. Journal of Geodesy, 77(7-8): 381-387.
[37]  Sun W K. 2004. Asymptotic solution of static displacements caused by dislocations in a spherically symmetric earth. Journal of Geophysical Research, 109(B5): B05402, doi: 10.1029/2003JB002793.
[38]  Taira A. 2001. Tectonic evolution of the Japanese Island Arc system. Annual Review of Earth and Planetary Sciences, 29: 109-134.
[39]  Wang R J, Lorenzo-Martín F, Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust-FORTRAN programs EDGRN/EDCMP. Computers & Geosciences, 29(2): 195-207.
[40]  Wang R J. 2005a. On the singularity problem of the elastic gravitational dislocation theory applied to plane-earth models. Geophysical Research Letters, 32(6): L06307, doi:10.1029/2003GL019358.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133