全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南阿拉斯加地壳及上地幔结构成像研究

DOI: 10.6038/cjg20140708, PP. 2113-2126

Keywords: 太平洋俯冲带,地震层析成像,地震产生,板块间耦合,亚库塔特板块

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过反演562891个纵波和156321个横波走时数据,第一次同时获得了阿拉斯加地区地壳及上地幔的纵波与横波速度以及泊松比图像,为更好地认识阿拉斯加地区的深部地震结构、太平洋板块与亚库塔特板块的俯冲几何形态提供了科学依据.成像结果表明P波和S波速度图像与泊松比结构具有很好的一致性,强的高速度和低泊松比异常沿着阿拉斯加俯冲带延伸至200km深度,该高速度和低泊松比异常体与俯冲带的地震空间分布吻合,因此,我们认为该高速体为俯冲的太平洋板块和亚库塔特板块.从地震空间分布发现,大部分大地震(M>6.5)发生在高速度与低速度异常交界处,可能反映了俯冲板块之间强耦合作用.在俯冲带的地幔楔显示出广泛的低速度和高泊松比异常,并且这些异常与岛弧火山的位置相对应,这与大洋板块俯冲所形成的岩浆入侵作用有关.研究结果表明在南阿拉斯加俯冲带,俯冲板块的俯冲角度从兰格尔块体下方的平坦变成在布里斯托尔湾下方的陡峭,这与亚库塔特板块俯冲在兰格尔块体下方和太平洋板块俯冲在布里斯托尔湾下方有关.在基奈半岛和科迪亚克岛连接处的上地幔位置存在强烈的低速与高泊松比异常体,使该处的大洋俯冲板块变薄.这一现象可能与亚库塔特板块和太平洋板块相互碰撞作用以及软流圈强烈的上升流入侵有关.

References

[1]  Tian Y, Zhao D P, Sun R M, et al. 2007. The 1992 Landers earthquake: Effect of crustal heterogeneity on earthquake generation. Chinese J. Geophys. (in Chinese), 50(5): 1488-1496.
[2]  Tian Y, Zhao D P, Liu C, et al. 2009. A review of body-wave tomography and its applications to studying the crust and mantle structure in China. Earth Science Frontiers, 16(2): 347-360.
[3]  Tian Y, Zhao D P. 2012. Seismic anisotropy and heterogeneity in the Alaska subduction zone. Geophysical Journal International, 190(1): 629-649.
[4]  Ueda Serya, Zhang Kang,Chang Gong, 1987. About trench-arc- back arc system arguments, concepts and unsolved problems. Offshore Oil(in Chinese), (03)40-47.
[5]  Wang Z, Zhao D P. 2005. Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan using P-wave, S-wave and sP depth-phase data. Physics of the Earth and Planetary Interiors, 152(3): 144-162.
[6]  Wang Z, Zhao D P, Wang J, et al. 2006. Tomographic evidence for the Eurasian lithosphere subducting beneath south Taiwan. Geophysical Research Letters, 33, L18306, doi:10.1029/2006GL 027166.
[7]  Wang Z, Zhao D P. 2006. Seismic images of the source area of the 2004 Mid-Niigata prefecture earthquake in Northeast Japan. Earth and Planetary Science Letters, 244(1-2): 16-31.
[8]  Zhao D P, Hasegawa A, Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. Journal of Geophysical Research: Solid Earth (1978-2012), 97(B13): 19909-19928.
[9]  Zhao D P, Hasegawa A, Kanamori H. 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. Journal of Geophysical Research: Solid Earth (1978-2012), 99(B11): 22313-22329.
[10]  Zhao D P, Christensen D, Pulpan H. 1995. Tomographic imaging of the Alaska subduction zone. Journal of Geophysical Research: Solid Earth (1978-2012), 100(B4): 6487-6504.
[11]  Zhao D P, Wang Z, Umino N, et al. 2009. Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics, 467(1-4): 89-106.
[12]  Ai Y S, Zhao D P, Gao X, et al. 2005. The crust and upper mantle discontinuity structure beneath Alaska inferred from receiver functions. Physics of the Earth and Planetary Interiors, 150(4): 339-350.
[13]  Brocher T M, Fuis G S, Fisher M A, et al. 1994. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic data. Journal of Geophysical Research: Solid Earth (1978-2012), 99(B6): 11663-11685.
[14]  Creager K C, Chiao L Y. 1992. Membrane deformation rate and geometry of Aleutian-Alaska subduction.//Chritensen D, Wyss M, Habermann R E, Davies J eds. Wadati Conference on Great Subduction Earthquakes. Univ. of Alaska, Fairbanks, 27.
[15]  Eberhart-Phillips D, Haeussler P J, Freymueller J T, et al. 2003. The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event. Science, 300(5622): 1113-1118.
[16]  Eberhart-Phillips D, Christensen D H, Brocher T M, et al. 2006. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data. Journal of Geophysical Research: Solid Earth (1978-2012), 111(B11), doi: 10.1029/2005JB004240.
[17]  Ferris A, Abers G A, Christensen D H, et al. 2003. High resolution image of the subducted Pacific (?) plate beneath central Alaska, 50~150 km depth. Earth and Planetary Science Letters, 214(3): 575-588.
[18]  Finzel E S, Trop J M, Ridgway K D, et al. 2011. Upper plate proxies for flat-slab subduction processes in southern Alaska. Earth and Planetary Science Letters, 303(3): 348-360.
[19]  Fuis G S, Ambos E L, Mooney W D, et al. 1991. Crustal structure of accreted terranes in southern Alaska, Chugach Mountains and Copper River Basin, from seismic refraction results. Journal of Geophysical Research: Solid Earth (1978-2012), 96(B3): 4187-4227.
[20]  Hong Hanjing. Alaska-Aleutian volcanic belt. http://blog.sina.com.cn/s/blog_7e67b28b0100u4hc.html, 2011-09-19/2013-09-25.
[21]  Kanamori H. 1986. Rupture process of subduction-zone earthquakes. Annual Review of Earth and Planetary Sciences, 14(1): 293-322.
[22]  Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397(3): 281-295.
[23]  Ma Zongjin, Du Pinren, Hong Hanjing. 2003. Strcture and Dynamics of the Earth(in Chinese). Guangzhou:Guangdong Science and Technology Press.
[24]  Qi C, Zhao D P, Chen Y. 2007. Search for deep slab segments under Alaska. Physics of the Earth and Planetary Interiors, 165(1-2): 68-82.
[25]  Qi C, Zhao D, Chen Y, et al. 2007. New insight into the crust and upper mantle structure under Alaska. Polar Science, 1(2): 85-100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133