全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维层状孔隙介质中弹性波的一种积分表达式II:正确性检验和数值模拟实验

DOI: 10.6038/cjg20140719, PP. 2244-2257

Keywords: 层状孔隙介质,弹性波,数值模拟,敏感度分析,垂直地震剖面

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于前一篇文章中得到的关于三维层状孔隙介质中弹性波场的积分形式半解析解,本文通过离散波数法开展了数值模拟.将全空间均匀孔隙介质中单力点源和爆炸点源作用下弹性波场的解析解和我们的数值模拟结果进行对比,发现两者是完全一致的.而在一个两层半空间模型下的数值模拟,验证了固相位移Green函数的9组空间互易性情况.通过以上两种对比检验,验证了半解析解理论公式、数值模拟方法以及相应程序代码的正确性和可靠性.随后利用敏感度分析研究了不同的介质参数变化对爆炸点源在界面上会产生的反射波场的影响.通过垂直地震剖面模型的数值模拟,发现弹性波场能很好地反映孔隙介质物理性质的变化,同时也讨论了动力协调这一孔隙介质中的特殊现象.我们发展的基于半解析解的数值模拟方法可以为三维层状孔隙介质中弹性波传播特征的研究提供一种可供选择的有效工具和手段.

References

[1]  Aki K, Richards P G. 1980. Quantitative Seismology, Theory and Methods. San Francisco CA: W. H. Freeman.
[2]  Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.
[3]  Gao Y X, Hu H S. 2009. Numerical simulation and analysis of seismoelectromagnetic wave fields excited by a point source in layered porous media. Chinese J. Geophys. (in Chinese), 52(8): 2093-2104.
[4]  Garambois S, Dietrich M. 2002. Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid-saturated stratified porous media. J. Geophys. Res., 107(B7): ESE 5-1-ESE 5-18.
[5]  Ge Z X, Chen X F. 2008. An efficient approach for simulating wave propagation with the boundary element method in multilayered media with irregular interfaces. Bull. Seism. Soc. Am., 98(6): 3007-3016.
[6]  Haartsen M W, Pride S R. 1997. Electroseismic waves from point sources in layered media. J. Geophys. Res., 102(B11): 24745-24769.
[7]  Hu H S, Wang K X, Liu J Q. 2002. Attenuation and dynamic compatibility of the fast compressional wave in porous medium. Chinese J. Computation Physics (in Chinese), 19(3): 203-207.
[8]  Johnson D L, Koplik J, Dashen R. 1987. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 176(4): 379-402.
[9]  Li N, Ren H X, Huang Q H, et al. 2014. An integral expression of elastic waves in 3D stratified porous media I: Theory. Chinese J. Geophys. (in Chinese),57(6): 1891-1899.
[10]  Luco J E, Apsel R J. 1983. On the Green’s function for a layered half-space: Part I. Bull. Seism. Soc. Am., 73(4): 909-929.
[11]  Martin B E, Thomson C J. 1997. Modelling surface waves in anisotropic structures II: Examples. Physics of the Earth and Planetary Interiors, 103(3-4): 253-279.
[12]  Norris A N. 1985. Radiation from a point source and scattering theory in a fluid saturated porous solid. J. Acoust. Soc. Amer., 77(6): 2012-2023.
[13]  Pride S R. 1994. Governing equations for the coupled electromagnetic and acoustics of porous media. Phys. Rev. B., 50(21): 15678-15696.
[14]  Pride S R, Haartsen M W. 1996. Electroseismic wave properties. J. Acoust. Soc. Am., 100(3): 1301-1315.
[15]  Pride S R, Berryman J G. 2003a. Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys. Rev. E, 68(3): 036603.
[16]  Pride S R, Berryman J G. 2003b. Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. Phys. Rev. E, 68(3): 036604.
[17]  Ren H X, Chen X F, Huang Q H. 2012. Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophys. J. Int., 188(3): 925-944.
[18]  Tang X M, Chen C H. 1996. Fast inversion of formation permeability from stoneley wave logs using a simplified Biot-Rosenbaum model. Geophysics, 61(3): 639-645.
[19]  Tang X M, Chen X L, Xu X K. 2012. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations. Geophysics, 77(6): D245-D252.
[20]  Berryman J G. 2006. Effective medium theories for multicmponent poroelastic composites. J. Eng. Mech., 132(5): 529-531.
[21]  Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 28(2): 168-178.
[22]  Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 28(2): 179-191.
[23]  Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33(4): 1482-1498.
[24]  Bouchon M. 1979. Discrete wave number representation of elastic wave fields in three-space dimensions. J. Geophys. Res., 84(B7): 3609-3614.
[25]  Bouchon M. 1981. A simple method to calculate Green''s functions for elastic layered media. Bull. Seismol. Soc. Am., 71(4): 959-971.
[26]  Burridge R, Vargas C A. 1979. The fundamental solutions in dynamic poro-elasticity. Gerophys. J. R. Astr. Soc., 58(1): 61-90.
[27]  Chen X F. 1993. A systematic and efficient method for computing seismic normal modes in layered half-space. Geophys. J. Int., 115(2): 391-409.
[28]  Chen X F. 2007. Generation and propagation of seismic SH waves in multi-layered media with irregular interfaces. Advances in Geophysics, 48: 191-264.
[29]  Ding B Y, Fan L B, Wu J H. 1999. The Green function and wave field on two-phase saturated medium by concentrated force. Chinese J. Geophys. (in Chinese), 42(6): 800-808.
[30]  Ding B Y, Song X C, Yuan J H. 2009. The solution of Green function of fluid phase in two-phase saturated medium. Chinese J. Geophys. (in Chinese), 52(7): 1858-1866.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133