全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电网磁暴灾害风险影响因素研究综述

DOI: 10.6038/cjg20140603, PP. 1709-1719

Keywords: 磁暴,电网故障风险,影响因素,地磁感应电流

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁暴是源自太阳磁场剧烈变化的地球空间效应,随着电网规模的增大和电压等级的增高,磁暴灾害已经成为诱发电网故障风险的威胁之一.研究电力系统磁暴灾害风险的影响因素可为预防与控制其引发的电网事故提供重要参考.在分析历史典型磁暴事件的基础上,剖析了磁暴诱发电力系统故障的机理,阐述了故障传播与电力系统响应的过程,总结了近年来关于影响电力系统的地磁感应电流水平及其产生的变压器无功损耗方面的研究成果,从磁暴本身的特点和电力系统的参数与结构两方面将影响因素分类.以GIC标准模型,通过改变磁暴扰动环境和电力系统参数,说明了各因素对电网磁暴灾害风险的影响程度,并比较了不同因素影响后果的差异,最后指出了尚未解决的问题和可能的研究方向.

References

[1]  Albertson V D, Thorson J M, Clayton R E, et al. 1973. Solar-induced-currents in power systems: cause and effects. IEEE Transactions on Power Apparatus and Systems, PAS-92(2): 471-477.
[2]  Albertson V D, Thorson J M. 1974. Power system disturbances during a K-8 geomagnetic storm: August 4, 1972. IEEE Transactions on Power Apparatus and Systems, PAS-93(4): 1025-1030.
[3]  Albertson V D, Kappenman J G, Mohan N, et al. 1981. Load-flow studies in the presence of geomagnetically-induced currents. IEEE Transactions on Power Apparatus and Systems, PAS-100(2): 594-607.
[4]  Baker D N. 2002. How to cope with space weather. Science, 297(5586): 1486-1487.
[5]  Béland J, Small K. 2005. Space weather effects on power transmission systems: the cases of Hydro-Québec and Transpower new Zealand Ltd.//Effects of Space Weather on Technology Infrastructure. Netherlands: Springer, 176: 287-299.
[6]  Bolduc L, Granger M, Paré G, et al. 2005. Development of a DC current-blocking device for transformer neutrals. IEEE Transactions on Power Delivery, 20(1): 163-168.
[7]  Boteler D H, Bui-Van Q, Lemay J. 1994. Directional sensitivity to geomagnetically induced currents of the Hydro-Quebec 735 kV power system. IEEE Transactions on Power Delivery, 9(4): 1963-1971.
[8]  Boteler D H, Pirjola R J. 1998. Modelling geomagnetically induced currents produced by realistic and uniform electric fields. IEEE Transactions on Power Delivery, 13(4): 1303-1308.
[9]  Bozoki B, Chano S R, Dvorak L L, et al. 1996. The effects of GIC on protective relaying. IEEE Transactions on Power Delivery, 11(2): 725-739.
[10]  Kappenman J G. 2005. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather, 3(8), doi: 10.1029/2004SW000128.
[11]  Kappenman John. 2010. Geomagnetic storm and their impacts on the U.S Power Grid. Goleta, California, US: Metatech Corp., 1-21
[12]  Koen J, Gaunt T. 2003. Geomagnetically induced currents in the southern African electricity transmission network.//IEEE Bologna Power Tech Conference Proceedings. Bologna, Italy: IEEE.
[13]  Lehtinen M, Pirjola R. 1985. Currents produced in earthed conductor networks by geomagnetically-induced electric fields. Annales Geophysicae, 3(4): 479-484.
[14]  Liu L G, Liu C M, Zhang B, et al. 2008. Strong magnetic storm''s influence on China''s Guangdong power grid. Chinese J. Geophys. (in Chinese), 51(4): 976-981.
[15]  Mohan N, Albertson V D, Speak T J, et al. 1982. Effects of geomagnetically-induced currents on HVDC converter operation. IEEE Transactions on Power Apparatus and Systems, PAS-101(11): 4413-4418.
[16]  Molinski T S. 2002. Why utilities respect geomagnetically induced currents. Journal of Atmospheric and Solar-terrestrial Physics, 64(16): 1765-1778.
[17]  NERC. 2012. 2012 Special reliability assessment interim report: Effects of geomagnetic disturbances on the bulk power system.
[18]  Overbye T J, Hutchins T R, Shetye K, et al. 2012. Integration of geomagnetic disturbance modeling into the power flow: A methodology for large-scale system studies. North American Power Symposium (NAPS), 1-7.
[19]  Overbye T J, Shetye K S, Hutchins T R, et al. 2013. Power grid sensitivity analysis of geomagnetically induced currents. IEEE Transactions on Power Systems, 28(4): 4821-4828.
[20]  Pirjola R. 1985. On currents induced in power transmission systems during geomagnetic variations. IEEE Transactions on Power Apparatus and Systems, PAS-104(10): 2825-2831.
[21]  Pirjola R. 2000. Geomagnetically induced currents during magnetic storms. IEEE Transactions on Plasma Science, 28(6): 1867-1873.
[22]  Pirjola R. 2007. Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modelling. Journal of Atmospheric and Solar-Terrestrial Physics, 69(12): 1305-1311.
[23]  Pirjola R. 2009. Properties of matrices included in the calculation of geomagnetically induced currents (GICs) in power systems and introduction of a test model for GIC computation algorithms. Earth Planets and Space (EPS), 61(2): 263-272.
[24]  Pirjola R. 2013. Practical model applicable to investigating the coast effect on the geoelectric field in connection with studies of geomagnetically induced currents. Advances in Applied Physics, 1(1): 9-28.
[25]  Price P R. 2002. Geomagnetically induced current effects on transformers. IEEE Transactions on Power Delivery, 17(4): 1002-1008.
[26]  Pulkkinen A, Bernabeu E, Eichner J, et al. 2012. Generation of 100-year geomagnetically induced current scenarios. Space Weather, 10(4), doi: 10.1029/2011SW000750.
[27]  Trivedi N B, Vitorello í, Kabata W, et al. 2007. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study. Space Weather, 5(4), doi: 10.1029/2006SW000282.
[28]  Walling R A, Khan A N. 1991. Characteristics of transformer exciting-current during geomagnetic disturbances. IEEE Transactions on Power Delivery, 6(4): 1707-1714.
[29]  Watari S, Kunitake M, Kitamura K, et al. 2009. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather, 7(3), doi: 10.1029/2008SW000417.
[30]  Wei F S. 2000. The basic issues of space weather. China Basic Science (in Chinese), (7): 9-13.
[31]  Zheng K, Liu L G, Boteler D H, et al. 2013a. Modelling geomagnetically induced currents in multiple voltage levels of a power system illustrated using the GIC-Benchmark case. Proceeding of the CSEE (in Chinese), 33(16): 179-186.
[32]  Zheng K, Trichtchenko L, Pirjola R J, et al. 2013b. Effects of geophysical parameters on GIC illustrated by benchmark network modeling. IEEE Transactions on Power Delivery, 28 (2): 1183-1191.
[33]  Albertson V D, Van Baelen J A. 1970. Electric and magnetic fields at the Earth''s surface due to auroral currents. IEEE Transactions on Power Apparatus and Systems, 89(4): 578-584.
[34]  Cooper C, Sovacool B K. 2011. Not your father''s Y2K: preparing the North American power grid for the perfect solar storm. The Electricity Journal, 24(4): 47-61.
[35]  Dong X Z, Liu Y L, Kappenman J G. 2001. Comparative analysis of exciting current harmonics and reactive power consumption from GIC saturated transformers. Power Engineering Society Winter Meeting, 1: 318-322.
[36]  Elovaara J, Lindblad P, Viljanen A, et al. 1992. Geomagnetically induced currents in the Nordic power system and their effects on equipment, control, protection and operation. Pres. CIGRE Colloquim., 2: 36-301.
[37]  Fallon D J, Balma P M, McNutt W J, et al. 1990. The destructive effects of geomagnetic induced currents in power transformers. Watertown, USA: Doble Engineering Company.
[38]  Gilbert J L. 2005. Modeling the effect of the ocean-land interface on induced electric fields during geomagnetic storms. Space Weather, 3(4): doi: 10.1029/2004SW000120.
[39]  Horton R, Boteler D H, Overbye T J, et al. 2012. A test case for the calculation of geomagnetically induced currents. IEEE Transactions on Power Delivery, 27(4): 2368-2373.
[40]  Kappenman J G, Norr S R, Sweezy G A, et al. 1991. GIC mitigation: a neutral blocking/bypass device to prevent the flow of GIC in power systems. IEEE Transactions on Power Deliver, 6(3): 1271-1281.
[41]  Kappenman J G. 1996. Geomagnetic storms and their impact on power systems. IEEE Power Engineering Review, 16(5): 5-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133