全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

汶川地震破裂带断层岩纵波速度与孔隙度关系的实验研究

DOI: 10.6038/cjg20140619, PP. 1883-1890

Keywords: P-波速度,孔隙度,汶川地震断裂带,实验研究

Full-Text   Cite this paper   Add to My Lib

Abstract:

分布于地震破裂带上的断层岩具有高孔隙度的特征.该特点造成了其弹性波速度与结晶岩石和沉积岩存在明显的差异.确定断层岩的弹性波速度与孔隙度和矿物组成的关系对于利用地震资料探测深部断层和测井资料的解释至关重要.在10~600MPa条件下,本文对地震断层岩的纵波波速(Vp)和总孔隙度(φt)进行了测量,并深入分析了Vp与孔隙度的关系.结果表明在10~600MPa的压力范围内,Vp(p)随着压力的增高呈现对数增加,其增长率随着压力的上升而逐渐减小,遵从?Vp(p)/?p=av/p的变化规律.断层岩中的孔隙度随着压力的增高呈对数减小.与传统的认识不同,实验发现在压力高达600MPa以上,大多数断层岩中仍然可以残留可观的孔隙量.分析显示Vp与总孔隙度及总粘土含量呈负线性相关.该发现有助于认识深部流体的活动通道特征,有助于理解断层带中存在大量粘土矿物、断层带内的物质可被大量带出、围陷波的形成等地质和地球物理现象.

References

[1]  Bass J D, Ahrens T J. 1995. Elasticity of minerals, glasses, and melts.//In: A Handbook of Physical Constants. AUG Reference Shelf 2, pp. 45-63.
[2]  Birch F. 1960. The velocity of compressional waves in rocks to 10kilobars, Part 1. J. Geophys. Res. 65(4): 1083-1102.
[3]  Blangy J P. 1992. Integrated Seismic lithologic interpretation: The Petrophysical Basis. Stanford: Stanford Uinv..
[4]  Bourbie T, Zinszner B. 1985. Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J. Geophys. Res., 90(B13): 11524-11532.
[5]  Brereton N R. 1992. Physical property relationships from sites 765 and 766.//In: Gradstein F M, Ludden J N, et al. Proceedings of The Ocean Drilling Program, Scientific Results, 123: 453-468.
[6]  Brevik I. 1995. Chalk data, presented at workshop on effective media, Karlsruhe.
[7]  Christensen N I. 1974. Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars. J. Geophys. Res., 79(2): 407-412.
[8]  Domenico S N. 1984. Rock lithology and porosity determination from shear and compressional wave velocity. Geophysics, 49(8): 1188-1195.
[9]  Eberhart-Phillips D, Han D H, Zoback M D. 1989. Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1): 82-89.
[10]  Freund D. 1992. Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure. Geophysics, 108(1): 125-135.
[11]  Han D H, Nur A, Morgan D. 1986. Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51(11): 2093-2107.
[12]  Innocentini M D M, Pandolfelli V C. 2001. Permeable porosity of refractory castables evaluated by the water-expulsion porosimetry technique. J. Am. Ceram. Soc., 84(1): 236-238.
[13]  Ji S C, Salisbury M H, Hanmer S. 1993. Petrofabric, P-wave anisotropy and seismic reflectivity of high-grade tectonites. Tectonophysics, 222(2): 195-226.
[14]  Ji S C, Wang Q, Xia B. 2002. Handbook of Seismic Propertiesof Minerals, Rocks and Ores. Montreal: Polytechnic International Press, 630 pp.
[15]  Jizba D L. 1991. Mechanical and acoustical properties of sandstones and shales. Stanford: Stanford University.
[16]  Kern H. 1982. P- and S-wave velocities in crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the effect of the rock microstructure.//High-Pressure researches in Geoscience, Schweizerbart, Stuttgart, 15-45.
[17]  Li S L, Lai X L, Yao Z X, et al. 2009. Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone trapped waves. Earthquake Sci., 22(4): 417-424.
[18]  Mavko G H, Nur A M. 1978. The effect of nonelliptical cracks on the compressibility of rocks. J. Geophys. Res., 83(B9): 4459-4468.
[19]  Pickett G R. 1963. Acoustic character logs and their application in formation evaluation. J. Tetrol. Technol., 15: 659-667.
[20]  Raymer L L, Hunt E R, Gardner J S. 1980. An improved sonic transit time-to porosity transform. 21st Annual Meeting Soc. Prof. Well Log Analyst.
[21]  Scheidegger A E. 1974. The physics of flow through porous media (3rd ed.). Toronto: Univ. of Toronto Press, 102pp.
[22]  Urmor J, Wilkens R H. 1993. Insiyu velocities in pelagic carbonates: New insights from ocean drilling program leg 130. Ontong Java Plateau. J. Geophys. Res., 98(B5): 7903-7920.
[23]  Walsh J B. 1965. The effect of cracks on the uniaxial elastic compression of rocks. J. Geophys. Res., 70(2): 399-411.
[24]  Wang Z J, Wang H, Cates M. 2001. Effective elastic properties of solid clays. Geophysics, 66(2): 428-440.
[25]  Wyllie M R J, Gregory A R, Gardner L W. 1956. Elastic waves velocities in heterogeneous and porous media. Geophysics, 21 (1): 41-70.
[26]  Yale D P, Jameison W H Jr. 1994. Static and dynamic rock mechanical properties in the Hugoton and Panoma field. Kansas Society of Petroleum Engineers, pp. 27939.
[27]  Yang X S, Ma J, Jin Z M, et al. 2003. Partial melting and its implication for understanding the seismic velocity structure within southern Tibet crust. Acta Geologica Sinica, 77(1): 64-71.
[28]  Cadoret T. 1993. Effet de la saturation Eau/Gazsur les proprietiesacoustiques des prckes. Paris: Univ. of Paris.
[29]  Chen J Y, Yang X S, Ma S L, et al. 2013. Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan earthquake fault: Geochemical evidence and implications for fault zone evolution and coseismic slip. J. Geophys. Res., 118(2): 474-496, doi: 10. 1002/jgrb. 50089.
[30]  Sibson R H, Robert F, Poulsen H. 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16(6): 551-555, doi: 10. 1130/0091-7613.
[31]  Strandences S. 1991. Rock physics analysis of the Brent Group Reservoir in the Oseberg field. Stanford Rockphysics and Borehole Geophysics Project, Special Volume 25pp.
[32]  Wang Q, Ji S C, Salisbury M H, et al. 2005. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China): Implications for seismic properties of subducted slabs and origin of mantle reflections. Tectonophysics, 398(1-2): 67-99.
[33]  Yang X S, Yang Y, Chen J Y. 2014. Pressure dependence of density, porosity, compressional wave velocity of fault rocks from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics, 619-620: 133-142.
[34]  Yokoyama T, Takeuchi S. 2009. Porosimetry of vesicular volcanic products by a water-expulsion method and the relationship of pore characteristics to permeability. J. Geophys. Res., 114(B2): B02201, doi: 10. 1029/2008JB005758.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133