全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

泥页岩岩石物理建模研究

DOI: 10.6038/cjg20140629, PP. 1990-1998

Keywords: 三维SCA_DEM,临界孔隙度,富有机质泥页岩,岩石物理,速度预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

泥页岩由于其复杂的岩石特性(主要是裂缝及有机质的存在),目前还没有有效的岩石物理模型可以较为精确的模拟其性质.本文在自洽模型和微分等效介质模型的基础上,引入Berryman三维孔隙形态及Brown-Korringa固体替代技术,建立适用于富有机质泥页岩的新型岩石物理模型.在此基础上进行正演分析,讨论不同孔隙形态对于自洽模型的临界孔隙度以及岩石速度的影响.正演分析的结果表明即使将未知的混合岩石作为背景岩石,微分有效介质模型的引入使得固体相和流体相仍然不是对称的,临界孔隙度不一定要落在0.4到0.6之间.且不同的孔隙形状对于自洽模型的临界孔隙度以及岩石的速度具有明显的影响.此外,基于岩石物理模型,文章讨论了不同孔隙形态、不同泥质含量时有机质对于岩石弹性性质的影响.最后利用一口页岩气井对该模型进行验证,预测的纵横波速度与测井结果吻合的很好,证明了该模型对于富有机质泥页岩的适用性.

References

[1]  Agnibha D, Michael B. 2009. A combined effective medium approach for modeling the viscoelastic properties of heavy oil reservoirs. 79th Annual International Meeting, SEG, Expanded Abstracts, 2110-2113.
[2]  Ahrens T J, Berryman J G. 1995. Mixture theories for rock properties.//Ahrens T J. Relations: A Handbook of Physical Constants. Washington D.C.: American Geophysical Union, 205-228.
[3]  Berryman J G. 1980. Long-wavelength propagation in composite elastic media-II. Ellipsoidal inclusions. Journal of the Acoustical Society of America, 68(6): 1820-1831.
[4]  Biot M A. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range. Journal of Acoustic Society of America, 28(2): 168-178.
[5]  Brown R J S, Korringa J. 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40(4): 608-616.
[6]  Budiansky B. 1965. On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13(4): 223-227.
[7]  Gassmann F. 1951. Uber die elastizitat porous media. Vier. der Natur. Gesellschaft in Zurich, 96(1): 1-23.
[8]  Hill R. 1965. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4): 213-222.
[9]  Hornby B E, Schwartz L M, Hudson J A. 1994. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 59(10): 1570-1583.
[10]  Mavko G, Mukerji T, Dvorkin J. 1998. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge: Cambridge University Press.
[11]  Norris A N, Sheng P, Callegari A J. 1985. Effective-medium theories for two-phase dielectric media. J. Appl. Phys., 57(6): 1990-1996.
[12]  Nur A, Marion D, Yin H Z. 1991. Wave velocities in sediments.//Hovem J M, Richardson M D, Stoll R D. Shear Waves in Marine Sediments. Kluwer, Norwell: Academic Publishers, 131-140.
[13]  Wu T T. 1966. The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2(1): 1-8.
[14]  Yuan H Z. 2007. Study of anisotropic rock physics model and application(in Chinese). Shandong: China University of Petroleum (Huadong).
[15]  Zimmerman R W. 1991. Compressibility of Sandstones. New York: Elsevier, 10-40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133