全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

位场向下延拓的改进迭代维纳滤波法

DOI: 10.6038/cjg20140626, PP. 1958-1967

Keywords: 位场,向下延拓,迭代维纳滤波,Tikhonov正则化,径向平均功率谱,偏差准则

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据维纳滤波理论导出的位场向下延拓滤波器为最佳下延滤波器,但因其实现需要已知待求位场和噪声的功率谱而在实际应用中受到限制.针对该问题,本文首先提出一种基于位场径向平均功率谱的位场噪声水平估计方法,进而利用偏差准则求取正则化参数,实现位场正则化向下延拓;然后将位场正则化下延结果的功率谱作为待求位场功率谱的估计初值,采用带修正项的迭代维纳滤波方法来更新对待求位场功率谱的估计,最后提出本文的位场向下延拓改进迭代维纳滤波方法.基于理论重力模型数据及航磁实测数据进行了向下延拓对比试验,结果表明,改进迭代法具有较好的收敛性,且下延精度优于Tikhonov正则化法和递增型维纳滤波法.

References

[1]  Abedi M, Gholami A, Norouzi G H. 2013. A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran. Computers & Geosciences, 52: 269-280.
[2]  Chen L W. 2013. Research on Spatial Domain Numerical Methods for Potential Field Continuation in Geomagmetic Navigation (in Chinese). Changsha: National University of Defense Technology.
[3]  Chen S C, Xiao P F. 2007. Wavenumber domain generalize inverse algorithm for potential field downward continuation. Chinese J. Geophys. (in Chinese), 50(6): 1816-1822.
[4]  Clarke G K C. 1969. Optimum second-derivative and downward-continuation filters. Geophysics, 34(3): 424-437.
[5]  Dampancy C N G. 1969. The equivalent source technique. Geophysics, 34(1): 39-53.
[6]  Fedi M, Florio G. 2002. A stable downward continuation by using the ISVD method. Geophysical Journal International, 151(1): 146-156.
[7]  Gao Y W, Luo Y, Wen W. 2012. The compensation method for downward continuation of potential field from horizontal plane and its application. Chinese J. Geophys. (in Chinese), 55(8): 2747-2756,doi:10.6038/j.issn.0001-5733.2012.08.026.
[8]  Gonzalez R C, Woods R E, Eddins S L. 2005. Digital Image Processing Using MATLAB. Beijing: Electronics Industry Press.
[9]  Liu D J, Hong T Q, Jia Z H, et al. 2009. Wave number domain iteration method for downward of potential fields and its convergence. Chinese J. Geophys. (in Chinese), 52(6): 1599-1605.
[10]  Ma G Q, Liu C, Huang D N, et al. 2013. A stable iterative downward continuation of potential field data. Journal of Applied Geophysics, 98: 205-211.
[11]  Ma T, Chen L W, Wu M P, et al. 2013. The selection of regularization parameter in downward continuation of potential field based on L-curve method. Progress in Geophys. (in Chinese), 28(5): 2485-2494,doi:10.6038/pg20130527.
[12]  Mitra S K, Kuo Y. 2006. Digital Signal Processing: A Computer-based Approach. New York: McGraw-Hill.
[13]  Morozov V A. 1984. Methods for Solving Incorrectly Posed Problems. New York: Springer-Verlag.
[14]  Pa?teka R, Richter F P, Karcol R, et al. 2006. Regularized derivatives of potential fields and their role in semi-automated interpretation methods. Geophysical Prospecting, 57(4): 507-516.
[15]  Pa?teka R, Karcol R, Ku?nirák D, et al. 2012. REGCONT: A MATLAB based program for stable downward continuation of geophysical potential fields using Tikhonov regularization. Computers & Geosciences, 49: 278-289.
[16]  Pawlowski R S. 1995. Preferential continuation for potential-field anomaly enhancement. Geophysics, 60(2): 390-398.
[17]  Ravat D, Pignatelli A, Nicolos I, et al. 2007. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International, 169(2): 421-434.
[18]  Spector A, Grant F S. 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35(2): 293-302.
[19]  Stefan M, Vijay D. 1995. Potential field power spectrum inversion for scaling geology. Journal of Geophysical Research, 100(B7): 12605-12616.
[20]  Tong Y D, Bian S F, Jiang D F, et al. 2012. A new integrated gravity matching algorithm based on approximated local gravity map. Chinese J. Geophys. (in Chinese), 55(9): 2917-2924,doi:10.6038/j.issn.0001-5733.2012.09.011.
[21]  Wang B Z, Wang S R. 1998. Spline function methods for upward continuation and downward continuation of 2D potential field. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 20(2): 125-129
[22]  Wang B Z. 2006. 2D and 3D potential-field upward continuation using splines. Geophysical Prospecting, 54(2): 199-209.
[23]  Wang H B, Wang Y, Fang J, et al. 2012. Simulation research on a minimum root-mean-square error rotation-fitting algorithm for gravity matching navigation. Science China: Earth Sciences, 55(1): 90-97.
[24]  Wang Y F. 2007. Computational Methods for Inverse Problems and Their Applications (in Chinese). Beijing: Higher Education Press.
[25]  Wang Y G, Zhang F X, Wang Z W, et al. 2011. Taylor series iteration for downward continuation of potential field. OGP (in Chinese), 46(4): 657-662.
[26]  Wang Y G, Wang Z W, Zhang F X, et al. 2012. Derivative-Iteration method for downward continuation of potential fields. Journal of Jilin University: Earth Science Edition (in Chinese),42(1): 240-245.
[27]  Wu Z T, Hu X P, Wu M P, et al. 2013. An experimental evaluation of autonomous underwater vehicle localization on geomagnetic map. Applied Physics Letters, 103(10): 104102.
[28]  Xu D X. 2005. Using gravity anomaly matching techniques to implement submarine navigation. Chinese J. Geophys. (in Chinese), 48(4): 812-816.
[29]  Xu S Z. 2006. The integral-iteration method for continuation of potential field. Chinese J. Geophys. (in Chinese), 49(4): 1176-1182.
[30]  Xu S Z, Yang J Y, Yang C F, et al. 2007. The iteration method for downward continuation of a potential field from a horizontal plane. Geophsical Prospecting, 55(6): 883-889.
[31]  Yao C L, Li H W, Zheng Y M, et al. 2012. Research on iteration method using in potential field transformations. Chinese J. Geophys. (in Chinese), 55(6): 2062-2078,doi:10.6038/j.issn.0001-5733.2012.06.028.
[32]  Li H W. 2012. Research on Iteration Method Using in Potential Field Transformations and Its Filter Characteristic (in Chinese). Beijing: China University of Geosciences (Beijing).
[33]  Li Y G, Devriese S G R, Krahenbuhl R A, et al. 2013. Enhancement of magnetic data by stable downward continuation for UXO application. IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3605-3614.
[34]  Liang J W. 1989. The regularization method for downward continuation of Potential field. Chinese J. Geophys. (in Chinese), 32(5): 600-608.
[35]  Zeng X N, Li X H, Han S Q, et al. 2011a. A comparison of three iteration methods for downward continuation of potential fields. Progress in Geophys. (in Chinese), 26(3): 908-915,doi:10.3969/j.issn.1004-2903.2011.03.016.
[36]  Zeng X N, Li X H, Liu D Z, et al. 2011b. Regularization analysis of integral iteration method and the choice of its optimal step-length. Chinese J. Geophys. (in Chinese), 54(11): 2943-2950,doi:10.3969/j.issn.0001-5733.2011.11.024.
[37]  Zeng X N, Li X H, Niu C, et al. 2013. The regularization-integral iteration method in wave number domain for downward continuation of potential fields. OGP (in Chinese), 48(4): 643-650.
[38]  Zeng X N, Li X H, Su J, et al. 2013. An adaptive iterative method for downward continuation of potential-field data from a horizontal plane. Geophysics, 78(4): J43-J52.
[39]  Zhang H, Chen L W, Ren Z X, et al. 2009. Analysis on convergence of iteration method for potential fields downward continuation and research on robust downward continuation method. Chinese J. Geophys. (in Chinese), 52(4): 1107-1113.
[40]  Zhang H L, Ravat D, Hu X Y. 2013. An improved and stable downward continuation of potential field data: The truncated Taylor series iterative downward continuation method. Geophysics, 78(5): J75-J86.
[41]  Zhang Z H, Wu L Y, Wang R S, et al. 2013. CGNR method for potential field downward continuation. Journal of Central South University (Science and Technology) (in Chinese), 44(8): 3273-3281.
[42]  Zhang Z H. 2013. Numerical Computation Method of Downward Continuation of Potential Fields. Hangzhou: Zhejiang University.
[43]  Zhou J, Shi G G, Ge Z L. 2011. Study of iterative regularization methods for potential field downward continuation in geophysical navigation. Journal of Astronautics, 32(4): 787-794.
[44]  Guo L H, Meng X H, Shi L, et al. 2012. Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent. Chinese J. Geophys. (in Chinese), 55(12): 4078-4088,doi:10.6038/j.issn.0001-5733.2012.12.020.
[45]  Guo L H, Meng X H, Chen Z X, et al. 2013. Preferential filtering for gravity anomaly separation. Computers & Geosciences, 51: 247-254.
[46]  Hansen R O, Miyazaki Y. 1984. Continuation of potential fields between arbitrary surfaces. Geophysics, 49(6): 787-795.
[47]  Hillery A D, Chin R T. 1991. Iterative Wiener filters for image restoration. IEEE Transactions on Signal Processing, 39(8): 1892-1899.
[48]  Hu X P, Wu M P. 2013. Technologies on Underwater Geomagnetic Field Navigation (in Chinese). Beijing: National Defense Industry Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133