Bothmer V, Rust D. 1997. The field configuration of magnetic clouds and the solar cycle. Geophys. Monog. Series, 99: 139-146.
[2]
Bothmer V, Schwenn R. 1997. The structure and origin of magnetic clouds in the solar wind. //Annales Geophysicae. Springer-Verlag, 16(1): 1-24.
[3]
Bothmer V, EU-INTAS-ESA Team. 2004. The solar and interplanetary causes of space storms in solar cycle 23. IEEE. T. Plasma Sci., 32(4): 1411-1414.
[4]
Burlaga L F, Plunkett S P, St Cyr O C. 2002. Successive CMEs and complex ejecta. J. Geophys. Res., 107(A10): SSH-1-1- SSH-1-12.
[5]
Burlaga L F, Skoug R M, Smith C W, et al. 2001. Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998—1999. J. Geophys. Res., 106(A10): 20957-20977.
[6]
Cane H V, Richardson I G. 2003. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996—2002. J. Geophys. Res., 108(A4), doi: 10.1029/2002JA009817.
[7]
Crooker N U. 2000. Solar and heliospheric geoeffective disturbances. J. Atmos. Sol.-Terr. Phys., 62(12): 1071-1085.
[8]
Despirak I V, Lubchich A A, Guineva V. 2011. Development of substorm bulges during storms of different interplanetary origins. J. Atmos. Sol.-Terr. Phys., 73(11-12): 1460-1464.
[9]
Gonzalez W D, Joselyn J A, Kamide Y, et al. 1994. What is a geomagnetic storm? J. Geophys. Res., 99(A4): 5771-5792.
[10]
Gonzalez W D, Tsurutani B T, de Gonzalez A L C. 1999. Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88(3-4): 529-562.
[11]
Gosling J T, Pizzo V, Bame S J. 1973. Anomalously low proton temperatures in the solar wind following interplanetary shock waves—evidence for magnetic bottles? J. Geophys. Res., 78(13): 2001-2009, doi: 10.1029/JA078i013p02001.
[12]
Gui B, Shen C D, Wang Y M, et al. 2011. Quantitative analysis of CME deflections in the corona. Sol. Phys., 271(1-2): 111-139.
[13]
Guo J P, Feng X S, Emery B A, et al. 2011. Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res., 116(A5), doi: 10.1029/2011JA016490.
[14]
Hirshberg J, Colburn D S. 1969. Interplanetary field and geomagnetic variations—a unifield view. Planet. Space Sci., 17(6): 1183-1206.
[15]
Huttunen K E J, Koskinen H E J. 2004. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. //Annales Geophysicae. Copernicus GmbH, 22(5): 1729-1738.
[16]
Huttunen K E J, Schwenn R, Bothmer V, et al. 2005. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys., 23(2): 625-641, doi: 10.5194/angeo-23-625-2005.
[17]
Ipavich F M, Galvin A B, Gloeckler G, et al. 1986. Solar wind Fe and CNO measurements in high-speed flows. J. Geophys. Res., 91(A4): 4133-4141.
[18]
Klein L W, Burlaga L F. 1982. Interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 87(A2): 613-624.
[19]
Le G M, Cai Z Y, Wang H N, et al. 2012. Solar cycle distribution of great geomagnetic storms. Astrophys. Space Sci., 339(1): 151-156.
[20]
Le G M, Cai Z Y, Wang H N, et al. 2013. Solar cycle distribution of major geomagnetic storms. Res. Astron. Astrophys., 13(6): 739-748.
[21]
Lepping R P, Jones J A, Burlaga L F. 1990. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 95(A8): 11957-11965.
[22]
Lepping R P, Wu C C. 2010. Selection effects in identifying magnetic clouds and the importance of the closest approach parameter. Ann. Geophys., 28(8): 1539-1552.
[23]
Liu Y, Richardson J D, Belcher J W. 2005. A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet. Space Sci., 53(1): 3-17.
[24]
Liu S L, Li L W. 2002. Study on relationship between southward IMF events and geomagnetic storms. Chinese J. Geophys. (in Chinese), 45(3): 297-305.
[25]
Lynch B J, Zurbuchen T H, Fisk L A, et al. 2003. Internal structure of magnetic clouds: Plasma and composition. J. Geophys. Res., 108(A6), doi: 10.1029/2002JA009591.
[26]
MacQueen R M, Hundhausen A J, Conover C W. 1986. The propagation of coronal mass ejection transients. J. Geophys. Res., 91(A1): 31-38.
[27]
Gosling J T. 1990. Coronal mass ejections and magnetic flux ropes in interplanetary space. Geophys. Monog. Series, 58: 343-364.
[28]
Gosling J T, Baker D N, Bame S J, et al. 1987. Bidirectional solar wind electron heat flux events. J. Geophys. Res., 92(A8): 8519-8535.
[29]
Gosling J T, Pizzo V J. 1999. Formation and evolution of corotating interaction regions and their three dimensional structure. // Corotating Interaction Regions. Netherlands: Springer, 21-52.
[30]
Mulligan T, Russell C T, Luhmann J G. 1998. Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett., 25(15): 2959-2962.
[31]
Richardson I G, Cane H V. 1995. Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta. J. Geophys. Res., 100(A12): 23397-23412.
[32]
Richardson I G, Cane H V. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996-2009): Catalog and summary of properties. Sol. Phys., 264(1): 189-237.
[33]
Shen C L, Wang Y M, Gui B, et al. 2011. Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Sol. Phys., 269(2): 389-400.
[34]
Tsurutani Bruce T, Gonzalez W D, Kamide Y. 1997. Magnetic storms. Surv. Geophys., 18: 364-367.
[35]
Wang Y M, Chen C X, Gui B, et al. 2011. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J. Geophys. Res., 116(A4), doi:10.1029/2010JA016101.
[36]
Wang Y M, Wang S, Ye P Z. 2002. Multiple magnetic clouds in interplanetary space. Sol. Phys., 211(1-2): 333-344.
[37]
Wang Y M, Ye P Z, Wang S. 2003. Multiple magnetic clouds: Several examples during March—April 2001. J. Geophys. Res., 108(A10), doi: 10.1029/2003JA009850.
[38]
Wang Y M, Ye P Z, Wang S. 2004. An interplanetary origin of great geomagnetic storms: Multiple magnetic clouds. Chinese J. Geophys. (in Chinese), 47(3): 369-375.
[39]
Webb D F, Howard R A. 1994. The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res., 99(A3): 4201-4220.
[40]
Wu C C, Lepping R P, Gopalswamy N. 2006. Relationships among magnetic clouds, CMEs, and geomagnetic storms. Sol. Phys., 239(1-2): 449-460.
[41]
Wu C C, Lepping R P, Gopalswamy N. 2003. Variations of magnetic clouds and CMEs with solar activity cycle. //Solar variability as an input to the Earth''s environment, 535: 429-432.
[42]
Wu C C, Lepping R P. 2011. Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23. Sol. Phys., 269(1): 141-153.
[43]
Yermolaev Y I, Nikolaeva N S, Lodkina I G, et al. 2012. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res., 117(A9), doi: 10.1029/2011JA017139.
[44]
Yermolaev Y I, Yermolaev M Y. 2006. Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events. Adv. Space Res., 37(6): 1175-1181.
[45]
Zurbuchen T H, Richardson I G. 2006. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev., 123(1-3): 31-43.