全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地球附近第23太阳活动周磁云和非磁云ICME的对比统计

DOI: 10.6038/cjg20140303, PP. 715-726

Keywords: 行星际日冕物质抛射,磁云,地磁暴

Full-Text   Cite this paper   Add to My Lib

Abstract:

行星际日冕物质抛射(ICME),作为影响地球空间天气的重要源头之一,根据其磁场结构特点可分为磁云(MC)和非磁云ICME两个子集.本文对第23周的磁云和非磁云ICME结构及其地磁效应进行对比统计研究.第23周ICME事件总数为317个,其中磁云占ICME比例为33.75%,非磁云ICME占66.25%.统计结果表明,非磁云ICME数与太阳黑子数呈现出非常好的正相关性,而磁云与太阳黑子数的这种相关性并不明显.相反,磁云占ICME的比率与太阳黑子数呈现出一定的反相关性.对磁云与非磁云ICME引起的地磁暴的比较研究表明:磁云及其鞘区引发的地磁暴平均水平要高于非磁云ICME及其鞘区.磁云和非磁云ICME的磁场强度、南向磁场强度和传播速度整体上都随地磁暴水平提升而增加.对磁云与非磁云ICME参数的进一步对比分析表明,磁云及其鞘区的平均磁场强度和南向磁场分量平均值都明显要比非磁云ICME的大;而二者的等离子体温度、密度和速度平均值相差并不明显.

References

[1]  Bothmer V, Rust D. 1997. The field configuration of magnetic clouds and the solar cycle. Geophys. Monog. Series, 99: 139-146.
[2]  Bothmer V, Schwenn R. 1997. The structure and origin of magnetic clouds in the solar wind. //Annales Geophysicae. Springer-Verlag, 16(1): 1-24.
[3]  Bothmer V, EU-INTAS-ESA Team. 2004. The solar and interplanetary causes of space storms in solar cycle 23. IEEE. T. Plasma Sci., 32(4): 1411-1414.
[4]  Burlaga L F, Plunkett S P, St Cyr O C. 2002. Successive CMEs and complex ejecta. J. Geophys. Res., 107(A10): SSH-1-1- SSH-1-12.
[5]  Burlaga L F, Skoug R M, Smith C W, et al. 2001. Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998—1999. J. Geophys. Res., 106(A10): 20957-20977.
[6]  Cane H V, Richardson I G. 2003. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996—2002. J. Geophys. Res., 108(A4), doi: 10.1029/2002JA009817.
[7]  Crooker N U. 2000. Solar and heliospheric geoeffective disturbances. J. Atmos. Sol.-Terr. Phys., 62(12): 1071-1085.
[8]  Despirak I V, Lubchich A A, Guineva V. 2011. Development of substorm bulges during storms of different interplanetary origins. J. Atmos. Sol.-Terr. Phys., 73(11-12): 1460-1464.
[9]  Gonzalez W D, Joselyn J A, Kamide Y, et al. 1994. What is a geomagnetic storm? J. Geophys. Res., 99(A4): 5771-5792.
[10]  Gonzalez W D, Tsurutani B T, de Gonzalez A L C. 1999. Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88(3-4): 529-562.
[11]  Gosling J T, Pizzo V, Bame S J. 1973. Anomalously low proton temperatures in the solar wind following interplanetary shock waves—evidence for magnetic bottles? J. Geophys. Res., 78(13): 2001-2009, doi: 10.1029/JA078i013p02001.
[12]  Gui B, Shen C D, Wang Y M, et al. 2011. Quantitative analysis of CME deflections in the corona. Sol. Phys., 271(1-2): 111-139.
[13]  Guo J P, Feng X S, Emery B A, et al. 2011. Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res., 116(A5), doi: 10.1029/2011JA016490.
[14]  Hirshberg J, Colburn D S. 1969. Interplanetary field and geomagnetic variations—a unifield view. Planet. Space Sci., 17(6): 1183-1206.
[15]  Huttunen K E J, Koskinen H E J. 2004. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. //Annales Geophysicae. Copernicus GmbH, 22(5): 1729-1738.
[16]  Huttunen K E J, Schwenn R, Bothmer V, et al. 2005. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys., 23(2): 625-641, doi: 10.5194/angeo-23-625-2005.
[17]  Ipavich F M, Galvin A B, Gloeckler G, et al. 1986. Solar wind Fe and CNO measurements in high-speed flows. J. Geophys. Res., 91(A4): 4133-4141.
[18]  Klein L W, Burlaga L F. 1982. Interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 87(A2): 613-624.
[19]  Le G M, Cai Z Y, Wang H N, et al. 2012. Solar cycle distribution of great geomagnetic storms. Astrophys. Space Sci., 339(1): 151-156.
[20]  Le G M, Cai Z Y, Wang H N, et al. 2013. Solar cycle distribution of major geomagnetic storms. Res. Astron. Astrophys., 13(6): 739-748.
[21]  Lepping R P, Jones J A, Burlaga L F. 1990. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res., 95(A8): 11957-11965.
[22]  Lepping R P, Wu C C. 2010. Selection effects in identifying magnetic clouds and the importance of the closest approach parameter. Ann. Geophys., 28(8): 1539-1552.
[23]  Liu Y, Richardson J D, Belcher J W. 2005. A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet. Space Sci., 53(1): 3-17.
[24]  Liu S L, Li L W. 2002. Study on relationship between southward IMF events and geomagnetic storms. Chinese J. Geophys. (in Chinese), 45(3): 297-305.
[25]  Lynch B J, Zurbuchen T H, Fisk L A, et al. 2003. Internal structure of magnetic clouds: Plasma and composition. J. Geophys. Res., 108(A6), doi: 10.1029/2002JA009591.
[26]  MacQueen R M, Hundhausen A J, Conover C W. 1986. The propagation of coronal mass ejection transients. J. Geophys. Res., 91(A1): 31-38.
[27]  Gosling J T. 1990. Coronal mass ejections and magnetic flux ropes in interplanetary space. Geophys. Monog. Series, 58: 343-364.
[28]  Gosling J T, Baker D N, Bame S J, et al. 1987. Bidirectional solar wind electron heat flux events. J. Geophys. Res., 92(A8): 8519-8535.
[29]  Gosling J T, Pizzo V J. 1999. Formation and evolution of corotating interaction regions and their three dimensional structure. // Corotating Interaction Regions. Netherlands: Springer, 21-52.
[30]  Mulligan T, Russell C T, Luhmann J G. 1998. Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett., 25(15): 2959-2962.
[31]  Richardson I G, Cane H V. 1995. Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta. J. Geophys. Res., 100(A12): 23397-23412.
[32]  Richardson I G, Cane H V. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996-2009): Catalog and summary of properties. Sol. Phys., 264(1): 189-237.
[33]  Shen C L, Wang Y M, Gui B, et al. 2011. Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Sol. Phys., 269(2): 389-400.
[34]  Tsurutani Bruce T, Gonzalez W D, Kamide Y. 1997. Magnetic storms. Surv. Geophys., 18: 364-367.
[35]  Wang Y M, Chen C X, Gui B, et al. 2011. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J. Geophys. Res., 116(A4), doi:10.1029/2010JA016101.
[36]  Wang Y M, Wang S, Ye P Z. 2002. Multiple magnetic clouds in interplanetary space. Sol. Phys., 211(1-2): 333-344.
[37]  Wang Y M, Ye P Z, Wang S. 2003. Multiple magnetic clouds: Several examples during March—April 2001. J. Geophys. Res., 108(A10), doi: 10.1029/2003JA009850.
[38]  Wang Y M, Ye P Z, Wang S. 2004. An interplanetary origin of great geomagnetic storms: Multiple magnetic clouds. Chinese J. Geophys. (in Chinese), 47(3): 369-375.
[39]  Webb D F, Howard R A. 1994. The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res., 99(A3): 4201-4220.
[40]  Wu C C, Lepping R P, Gopalswamy N. 2006. Relationships among magnetic clouds, CMEs, and geomagnetic storms. Sol. Phys., 239(1-2): 449-460.
[41]  Wu C C, Lepping R P, Gopalswamy N. 2003. Variations of magnetic clouds and CMEs with solar activity cycle. //Solar variability as an input to the Earth''s environment, 535: 429-432.
[42]  Wu C C, Lepping R P. 2011. Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23. Sol. Phys., 269(1): 141-153.
[43]  Yermolaev Y I, Nikolaeva N S, Lodkina I G, et al. 2012. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res., 117(A9), doi: 10.1029/2011JA017139.
[44]  Yermolaev Y I, Yermolaev M Y. 2006. Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events. Adv. Space Res., 37(6): 1175-1181.
[45]  Zurbuchen T H, Richardson I G. 2006. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev., 123(1-3): 31-43.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133