全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

声发射矩张量反演

DOI: 10.6038/cjg20140315, PP. 858-866

Keywords: 声发射,震源机制,矩张量反演,破裂模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震矩张量反演是获取震源过程的有效方法.岩石变形过程中的声发射与地震类似,均是弹性应变能快速释放.如假设条件得到满足,矩张量反演方法同样可用于了解声发射震源过程.声发射矩张量反演可使用P波位移进行计算.当样品尺寸远大于声发射波长,且声发射由微破裂产生,声发射源的尺度很小时,P波矩张量反演可采用远场近似.本文首先针对声发射的特点,实现根据远场P波反演声发射矩张量的算法,并通过人工声发射实验对算法的正确性和可靠性进行了检验.最后,用声发射矩张量反演方法对花岗岩单轴压缩实验的声发射源特征进行了分析.结果表明:对于纯剪切破裂模式,声发射矩张量反演可得断层面;对于非纯剪切破裂模式,如纵向挤压导致的横向张性劈裂,由于存在多解性不能得到断层面,但可通过矩张量的迹区分破裂模式.

References

[1]  Song F X, Ma S L. 2004. Study on deformation and rupture features of model III shear faults using focal mechanism solution of acoustic emission. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 23(23): 4084-4089.
[2]  Yu H Z, Zhu Q Y, Yin X C, et al. 2005. Moment tensor analysis of the acoustic emission source in the rock damage process. Progress in Natural Science, 15(7): 609-613.
[3]  Yuyama S, Li Z W, Ito Y, et al. 1999. Quantitative analysis of fracture process in RC column foundation by moment tensor analysis of acoustic emission. Construction and Building Materials, 13(1-2): 87-97.
[4]  Zang A, Christian Wagner F, Stanchits S, et al. 1998. Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads. Geophysical Journal International, 135(3): 1113-1130.
[5]  Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods. Vol. 1. W. H. Freeman and Company.
[6]  Carvalho F C S, Labuz J F. 2002. Moment tensors of acoustic emissions in shear faulting under plane-strain compression. Tectonophysics, 356(1-2): 199-211.
[7]  Chang S H, Lee C I. 2004. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. International Journal of Rock Mechanics and Mining Sciences, 41(7): 1069-1086.
[8]  Dahm T, Manthei G, Eisenbltter J. 1999. Automated moment tensor inversion to estimate source mechanisms of hydraulically induced micro-seismicity in salt rock. Tectonophysics, 306(1): 1-17.
[9]  Graham C C, Stanchits S, Main I G, et al. 2010. Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data. International Journal of Rock Mechanics and Mining Sciences, 47(1): 161-169.
[10]  Grosse C U, Finck F. 2006. Quantitative evaluation of fracture processes in concrete using signal-based acoustic emission techniques. Cement and Concrete Composites, 28(4): 330-336.
[11]  Grosse C U, Ohtsu M. 2008. Acoustic Emission Testing. Berlin Heidelberg: Springer.
[12]  Kao C S, Carvalho F C S, Labuz J F. 2011. Micromechanisms of fracture from acoustic emission. International Journal of Rock Mechanics and Mining Sciences, 48(4): 666-673.
[13]  Kawasaki Y, Tomoda Y, Ohtsu M. 2010. AE monitoring of corrosion process in cyclic wet-dry test. Construction and Building Materials, 24(12): 2353-2357.
[14]  Kuwahara Y, Yamamoto K, Kosuga M, et al. 1985. Focal mechanisms of acoustic emissions in Abukuma-granite under uniaxial and biaxial compressions. Tohoku Geophysical Journal, 30(1): 1-14.
[15]  Lei X L, Nishizawa O, Kusunose K, et al. 1992. Fractal structure of the hypocenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes. Journal of Physics of the Earth, 40(6): 617-634.
[16]  Liu P X, Liu L Q, Huang Y M, et al. 2009. Robust arithmetic for acoustic emission location. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 28(S1): 2760-2764.
[17]  Manthei G, Eisenbltter J, Dahm T. 2001. Moment tensor evaluation of acoustic emission sources in salt rock. Construction and Building Materials, 15(5-6): 297-309.
[18]  Ohtsu M. 1991. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test. Journal of Geophysical Research, 96(B4): 6211-6221.
[19]  Ohtsu M. 1995. Acoustic emission theory for moment tensor analysis. Research in Nondestructive Evaluation, 6(3): 169-184.
[20]  Satoh T, Nishizawa O, Kusunose K. 1990. Fault development in Oshima granite under triaxial compression inferred from hypocenter distribution and focal mechanism of acoustic emission. Tohoku Geophysical Journal, 33(3-4): 241-250.
[21]  Shigeishi M, Ohtsu M. 2001. Acoustic emission moment tensor analysis: development for crack identification in concrete materials. Construction and Building Materials, 15(5-6): 311-319.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133