全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云南高黎贡山典型板岩地震波各向异性研究

DOI: 10.6038/cjg20140313, PP. 837-846

Keywords: 板岩,地震波速,各向异性,横波分裂,微裂隙

Full-Text   Cite this paper   Add to My Lib

Abstract:

板岩作为一种浅变质岩在我国有着广泛的分布,对其地震波速度的研究将有助于对这类过渡性岩石的有效区分,对于浅层地壳的各向异性研究也具有重要意义.本文对采自云南丙中洛地区的板岩样品进行了地震波速度的室内实验研究,其中部分实验是在加拿大DalhousieHighPressureLaboratory完成.实验获得了板岩在围压10~600MPa条件下、不同构造主方向(X,Y和Z)上的地震波速度,在围压600MPa时,X、Y、Z三个方向的P波速度分别为6.58、6.46、5.91km/s,平均速度为6.30km/s,S波平均速度约为3.62km/s,VP/VS=1.74;并初步分析了板岩地震波速度、横波分裂及其波速各向异性随着围压的变化规律,发现所测量的板岩在较低围压(<150MPa)时波速的各向异性随围压升高而迅速减小,主要是由于其内部微裂隙的定向排列引起的,而随着围压的继续增加(>150MPa时)微裂隙基本闭合,黑云母、阳起石等片状矿物的定向排列成为其地震波各向异性的主导诱因,此时(围压为600MPa)VP、VS的各向异性分别稳定在13%、16%左右.本研究所获取的基础实验数据及所探讨的板岩地震波性质将为确定地壳上部显微裂隙的优选定向、浅层地壳的各向异性分析、地球物理模型条件约束等提供基础.

References

[1]  Ji S C, Michibayashi Katsuyoshi, Shao T B, et al. 2013. Seismic velocities, anisotropy and petrofabrics of amphibolite from the Gaoligong Mts., Yunnan. Geological Review (in Chinese), 59(4): 769-780.
[2]  Jung H. 2011. Seismic anisotropy produced by serpentine in mantle wedge. Earth Planet Sci. Lett., 307(3-4): 535-543.
[3]  Kern H. 1993. P- and S-wave anisotropy and shear-wave splitting at pressure and temperature in possible mantle rocks and their relation to the rock fabric. Phys. Earth Planet Inter., 78(3-4): 245-256.
[4]  Kern H, Lui B, Popp T. 1997. Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolites. J. Geophys. Res., 102(B2): 3051-3065.
[5]  Liu M J, Li S L, Fang S M, et al. 2008. Study on crustal composition and geodynamics using seismic velocities in the northeastern margin of the Tibetan Plateau. Chinese J. Geophys. (in Chinese), 51(2): 412-430.
[6]  Li Y H, Wu Q J, Zhang F X, et al. 2011. Seismic anisotropy of the Northeastern Tibetan plateau from shear wave splitting analysis. Earth Planet Sci. Lett., 304(1): 147-157.
[7]  Li J Y, Chen X H. 2006. Study on seismic wave field unmerical simulation in transverse isotropic medium. Progress in Geophysics (in Chinese), 21(3): 700-705.
[8]  Lekhnitskii S G. 1963. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco.
[9]  Lo T W, Coyner K B, Toksoz M N. 1986. Experimental determination of elastic anisotropy of berea sandstone, chiocopee shale, and chelmsford granite. Geophysics, 51(1): 164-171.
[10]  Ji S C, Li A, Wang Q, et al. 2013. Seismic velocities, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones. J. Geophys. Res., 118(3): 1015-1037.
[11]  Sun S S. 2011. Seismic velocities, anisotropy and elastic properties of crystalline rocks and implications for interpretation of seismic data. [Ph. D thesis]. Canada: école Polytechnique de Montréal, 210.
[12]  Sun S S, Ji S C, Wang Q, et al. 2012. Seismic velocities and anisotropy of core samples from the Chinese continental scientific drilling borehole in the Sulu UHP terrane, eastern China. J. Geophys. Res., 117, B01206.
[13]  Wang Q, Ji S C, Xu Z Q. 2009. Vp/Vs anisotropy and implications for crustal composition identification and earthquake prediction. Acta Geologica Sinica, 83(4): 801-815.
[14]  Wang Q, Ji S C, Sun S S, et al. 2011. Elastic and seismic properties of the Dabie-Sulu ultrahigh pressure metamorphic rocks. Acta Geologica Sinica, 86(1): 20-37.
[15]  Wei W, Zhao D P, Shi Y L. 2010. Three-dimensional P-wave tomography of the volcanic areas in southwest Japan. Earth Science Frontiers (in Chinese), 17(3): 149-157.
[16]  Yuan X C, Xu M C, Tang W B, et al. 1994. Eastern qinling seismic reflection profiling. Acta Geologica Sinica (in Chinese), 37(6): 749-758.
[17]  Zhang Z J, Zhang X, Badal J. 2008.Composition of the crust beneath southeastern China derived from an integrated geophysical data set. Journal of Geophysical Research-Solid Earth, 113(B04417), doi: 10.1029/2006JB004503.
[18]  Brich F. 1960. The velocity of compressional waves in rocks to 10 kilobar: Part 1. J. Geophys. Res., 65(4): 1083-1102.
[19]  Birch F. 1961. The velocity of compressional waves in rocks to 10 kilobars: Part2. J. Geophys. Res., 66(7): 2199-2224.
[20]  Bachman R T. 1983. Elastic anisotropy in marine sedimentary rocks. Journal of Geophysical Research, 88(B1): 539-545.
[21]  Chen Y, Zhang Z J, Sun C Q, et al. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Research, 24(3-4): 946-957.
[22]  Christensen N I. 1965. Compressional wave velocities in metamorphic rocks at pressures to 10 kilobars. J. Geophys. Res., 70(24): 6147-6164.
[23]  Christensen N I, Pamananantoandro R. 1971. Elastic moduli and anisotropy of dunite to 10 kilobars. J. Geophys. Res., 76(17): 4003-4010.
[24]  Christensen N I. 1978. Ophiolites, seismic velocities, and oceanic crustal structure. Tectonophysics, 47: 131-157.
[25]  Deng T, Yang L D. 2006. Characteristics of velocity ratio of P-wave and S-wave for anisotropy rocks. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 25(10): 2023-2029.
[26]  Deng J X, Shi G, Liu R X, et al. 2004. Analysis of the velocity anisotropy and its affention factors in shale and mudstone. Chinese Journal of Geophysics (in Chinese), 47(5): 862-868.
[27]  Daley P F, Hron F. 1977. Reflection and transmission coefficients for transversely isotropic media. Bulletin of the Seismological Society of America, 67: 661-675.
[28]  Gardner G H F, Wyllie M R J, Droschak D H. 1965. Hysterisis in the velocity-pressure characteristics of rocks. Geophysics, 30(1): 111-134.
[29]  Godfrey N J, Christensen N I, Okaya D A. 2000. Anisotropy of schists: contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. J. Geophys. Res., 105(B12): 27991-28007.
[30]  Kim H, Cho J W, Song I, et al. 2012. Anisotropy of elastic moduli, P-wave velocities, and thermal conductivities of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist in Korea. Engineering Geology, 147-148: 68-77.
[31]  Hao C T, Yao C, Wagn X. 2006. The characteristics of velocities with azimuth variation for arbitrary spatial orientation TI media. Progress in Geophysics (in Chinese), 21(2): 524-530.
[32]  Jones L E A, Wang H F. 1981. Ultrasonic velocities in Cretaceous shales from the Williston basin. Geophysics, 46(3): 288-297.
[33]  Johonston J E, Christensen N I. 1995. Seismic anisotropy of shales. J. Geophys. Res., 100(B4): 5991-6003.
[34]  Ji S C, Wang Q, Marcotte D, et al. 2007. P-wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. J. Geophys. Res., 112, B09204, doi: 10.1029/2006JB004867.
[35]  Ji S C, Wang Q, Xia B. 2002. Handbook of Seismic Properties of Minerals, Rocks and Ores Seismic Properties. Polytechnic International Press, 630.
[36]  Ji S C, Salisbury M H. 1993. Shear-wave velocities, anisotropy and splitting in the high-grade mylonites. Tectonophysics, 221: 453-473.
[37]  Ji S C, Zhao X O, Francis D. 1994. Calibration of shear-wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophysics, 239: 1-28.
[38]  Sun D S, Li A W, Wang H C, et al. Experiment on anisotropy of permeability with tight sandstone. Progress in Geophys. (in Chinese), 27(3): 1101-1106.
[39]  Crampin S, Peacock S. 2008. A review of the current understanding of seismic shear-wave splitting in the Earth''s crust and common fallacies in interpretation. Wave Motion, 45(6): 675-722.
[40]  Ji S C, Li A, Wang Q, et al. 2013.Seismic velocities, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones. J. Geophys. Res.,118(3): 1015-1037.
[41]  Song I, Such M, Woo Y K, et al. 2004. Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements. Engineering Geology, 72(3-4): 293-308
[42]  Zimmerman R W, Somerton W H, King M S. 1986. Compressibility of porous rocks. J. Geophys. Res., 91(B12): 12,765-12, 277.
[43]  Zhang Z J,2002. A reviews of the seismic anisotropy and its applications. Progress in Geophys. (in Chinese), 17(2): 281-293.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133