全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国低纬度地区电离层闪烁效应模式化研究

DOI: 10.6038/cjg20140301, PP. 691-702

Keywords: 电离层闪烁,GPS,周跳,电离层不均匀结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

GPS(GlobalPositioningSystem)周跳是一种GPS信号异常现象.研究发现一定仰角以上的GPS周跳与电离层闪烁有关,是强电离层闪烁造成的GPS载波信号短时失锁现象,因此其可作为表征电离层闪烁效应的参量.本文通过分析由中国低纬度地区GPS台站原始观测数据提取的GPS周跳发生率与地方时、季节、太阳活动以及磁活动之间的关系,开展电离层闪烁效应与这几种参量之间关系的模式化研究.研究结果表明:(1)周跳发生率存在着地方时分布,发生时段主要在日落19:00LT后到午夜02:00LT之前,发生次数在22:00LT左右达到极大,然后缓慢减少,这一变化特点可以用自变量为地方时的Chapman函数形式来描述;(2)周跳发生率存在年变化特点,主要发生在年积日45~135天(春分季节)和225~315天(秋分季节),可以通过高斯函数来描述每个分季闪烁效应的变化特点;(3)可以利用太阳辐射指数F10.7作为描述周跳随太阳活动周变化的参量,根据周跳随太阳活动周的变化特点,我们使用一个以F10.7为自变量的三次函数来描述这种变化;(4)电离层闪烁与磁活动的关系比较复杂,由于大多数情况下表现为磁活动对电离层闪烁的抑制作用,在本研究中使用一个以地磁活动指数Ap为自变量的的平方根函数来拟合这种变化.

References

[1]  Afraimovich E L, Lesyuta O S, Ushakov I I, et al. 2002. Geomagnetic storms and the occurrence of phase slips in the reception of GPS signals. Ann. Geophys., 45(1): 55-71.
[2]  Afraimovich E L, Demyanov V V, Kondakova T N. 2003. Degradation of GPS performance in geomagnetically disturbed conditions. GPS Solutions, 7(2): 109-119.
[3]  Basu S, Basu S, Makela J, et al. 2006. Equatorial anomaly development mapped by TIMED/GUVI: Occurrence/suppression of scintillations at low latitudes and their modeling. Western Pacific Geophysics Meeting (WPGM).
[4]  Beach T L, Kintner P M. 2001. Development and use of a GPS ionospheric scintillation monitor. IEEE Transactions on Geoscience and Remote Sensing, 39(5): 918-928.
[5]  Blewitt G. 1990. An automatic editing algorithm for GPS data. Geophys. Res. Lett., 17(3): 199-202.
[6]  Chen W S, Lee C C, Liu J Y, et al. 2006. Digisonde spread F and GPS phase fluctuations in the equatorial ionosphere during solar maximum. J. Geophys. Res., 111: A12305.
[7]  Collin F, Warrant R. 1995. Applications of the wavelet transform for GPS cycle slip correction and comparison with Kalman filter. Manuscripta Geodaetica, 20(3): 161-172.
[8]  Conker R S, El-Arini M B, Hegarty C J, et al. 2003. Modeling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci., 38(1): 1-1-1-23.
[9]  Gao Y, Li Z F. 1999. Cycle slip detection and ambiguity resolution algorithms for dual-frequency GPS data processing. Marine Geodesy, 22(3): 169-181.
[10]  Hofmann-Wellenhof B, Lichtenegger H, Collins J. 1993. Global Positioning System: Theory and Practice. 4th ed. Wien (Austria): Springer.
[11]  Kelley M C. 2009. The Earth''s Ionosphere: Plasma Physics & Electrodynamics. San Diego, CA USA: Academic Press.
[12]  Ko C P, Yeh H C. 2010. COSMIC/FORMOSAT-3 observations of equatorial F region irregularities in the SAA longitude sector. J. Geophys. Res., 115: A11309.
[13]  Li G Z, Ning B Q, Zhao B Q, et al. 2009. Characterizing the 10 November 2004 storm-time middle-latitude plasma bubble event in Southeast Asia using multi-instrument observations. J. Geophys. Res., 114: A07304.
[14]  Shang S P, Shi J K, Guo J S, et al. 2005. Ionospheric scintillation monitoring and preliminary statistic analysis over Hainan region. Chin. J. Space Sci. (in Chinese), 25(1): 23-28.
[15]  Skone S, Feng M, Ghafoori F, et al. 2008. Investigation of scintillation characteristics for high latitude phenomena. // Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008). Savannah, Georgia, USA.
[16]  Skone S, de Jong M. 2000. The impact of geomagnetic substorms on GPS receiver performance. Earth Planets Space, 52: 1067-1071.
[17]  Teunissen P J G. 1990. Quality control in integrated navigation systems. // Position Location and Navigation Symposium, 1990. Record. The 1990''s—A Decade of Excellence in the Navigation Sciences. IEEE PLANS''90., IEEE. Las Vegas, NV: IEEE: 158-165.
[18]  Van Dierendonck A J, Klobuchar J, Hua Q Y. 1993. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. Proceedings of ION GPS-93.
[19]  Wang S Y, Wang J S, Yu T, et al. 2010. Preliminary analysis of ionospheric scintillations over Guangzhou region of China. Chin. J. Space Sci. (in Chinese), 30(2): 141-147.
[20]  Xu J S, Yeh K C. 1993. Nocturnal disturbances of total electron content and their correlation with VHF radio wave scintillations in the Pacific-Asia region. Radio Sci., 28(5): 767-774.
[21]  Xu J S, Zhu J, Li L, et al. 2007. Comparison of L-band radio wave scintillations and TEC fluctuations from observation of Wuhan and Guilin. Chin. J. Radio Sci. (in Chinese), 22(2): 181-186.
[22]  Zhang D H, Feng M, Xiao Z, et al. 2007. The seasonal dependence of cycle slip occurrence of GPS data over China low latitude region. Science in China Series E, 50(4): 422-429.
[23]  Zhang D H, Cai L, Hao Y Q, et al. 2010a. Solar cycle variation of the GPS cycle slip occurrence in China low-latitude region. Space Weather, 8(10): S10D10.
[24]  Zhang D H, Xiao Z, Feng M, et al. 2010b. Temporal dependence of GPS cycle slip related to ionospheric irregularities over China low-latitude region. Space Weather, 8(4): S04D08.
[25]  Zhang D H, Mo X H, Ercha A, et al. 2012. Case study of ionospheric fluctuation over mid-latitude region during one large magnetic storm. Science China Technological Sciences, 55(5): 1198-1206.
[26]  Zhang T H, Xiao Z. 2000. Effect of the coupling of different Ionospheric regions on the nighttime F region irregularities in mid-low latitudes. Chinese J. Geophys.(in Chinese), 43(5): 589-597.
[27]  Aarons J, Mendillo M, Yantosca R, et al. 1996. GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign. J. Geophys. Res., 101(A12): 26851-26862.
[28]  Abdu M A, Jayachandran P, MacDougall J, et al. 1998. Equatorial F region zonal plasma irregularity drifts under magnetospheric disturbances. Geophys. Res. Lett., 25(22): 4137-4140.
[29]  Abdu M A, Batista I S, Takahashi H, et al. 2003. Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. J. Geophys. Res., 108 (A12): 1449.
[30]  Abdu M A. 2012. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J. Atmos. Solar-Terr. Phys., 75-76: 44-56.
[31]  Li G Z, Ning B Q, Hu L H, et al. 2010. Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. J. Geophys. Res., 115: A04304.
[32]  Mendillo M, Baumgardner J, Pi X Q, et al. 1992. Onset conditions for equatorial spread F. J. Geophys. Res., 97(A9): 13865-13876.
[33]  Mendillo M, Merriwether J, Biondi M. 2001. Testing the thermospheric neutral wind suppression mechanism for day-to-day variability of equatorial spread F. J. Geophys. Res., 106(A3): 3655-3663.
[34]  Misra P, Enge P. 2001. Global Positioning System: Signals, Measurements, and Performance. Lincoln, Massachusetts: Ganga-Jamuna Press.
[35]  Nicolls M J, Kelley M C. 2005. Strong evidence for gravity wave seeding of an ionospheric plasma instability. Geophys. Res. Lett., 32(5): L05108.1-L05108.4.
[36]  Rama Rao P V S, Gopi Krishna S, Niranjan K, et al. 2006. Study of spatial and temporal characteristics of L-band scintillations over the Indian low-latitude region and their possible effects on GPS navigation. Ann. Geophys., 24(6): 1567-1580.
[37]  Sahai Y, Fagundes P R, Bittencourt J A, et al. 1998. Occurrence of large scale equatorial F region plasma depletions during geo-magnetic disturbances. J. Atmos. Solar-Terr. Phys., 60(16): 1593-1604.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133