[1] | Clayton R, Engquist B. 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Am., 67(6): 1529-1540.
|
[2] | Collino F, Tsogka C. 2001. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66(1): 294-307, doi: 10.1190/1.1444908.
|
[3] | Dong L G, Ma Z T, Cao J Z, et al. 2000. A staggered-grid high-order difference method of one-order elastic wave equation. Chinese J. Geophys. (in Chinese), 43(3): 411-419.
|
[4] | Du Q Z, Li B, Hou B. 2009. Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme. Appl. Geophys., 6(1): 42-49, doi:10.1007/s11770-009-0008-z.
|
[5] | Hu W Y, Abubakar A, Habashy T M. 2007. Application of the nearly perfectly matched layer in acoustic wave modeling. Geophysics, 72(5): SM169-SM175, doi: 10.1190/1.2738553.
|
[6] | Komatitsch D, Martin R. 2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 72(5): SM155-SM167, doi: 10.1190/1.2757586.
|
[7] | Komatitsch D, Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys. J. Int., 154(1): 146-153, doi: 10.1046/j.1365-246X.2003.01950.x.
|
[8] | Kosloff R, Kosloff D. 1986. Absorbing boundaries for wave propagation problems. J. Comput. Phys., 63(2): 363-376, doi: 10.1016/0021-9991(86)90199-3.
|
[9] | Lan H, Zhang Z. 2011. Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation. J. Geophys. Eng., 8(2): 275-286, doi:10.1088/1742-2132/8/2/012.
|
[10] | Levander A R. 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53(11): 1425-1436, doi: 10.1190/1.1442422.
|
[11] | Liu Y, Sen M K. 2009. An implicit staggered-grid finite-difference method for seismic modelling. Geophys. J. Int., 179(1): 459-474, DOI: 10.1111/j.1365-246X.2009.04305.x.
|
[12] | Liu Y, Sen M K. 2010. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics, 75(2): A1-A6, doi: 10.1190/1.3295447.
|
[13] | Opral I, Zahradnik J. 1999. From unstable to stable seismic modelling by finite-difference method. Phys. Chem. Earth, Part A, 24(3): 247-252, doi: 10.1016/S1464-1895(99)00026-5.
|
[14] | Pei Z L. 2004. Numerical modeling using staggered-grid high-order finite-difference of elastic wave equation on arbitrary relief surface. Oil Geophys. Prosp. (in Chinese), 39(6): 629-634.
|
[15] | Robertsson J O A. 1996. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics, 61(6): 1921-1934, doi: 10.1190/1.1444107.
|
[16] | Bérenger J P. 1994. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2): 185-200, doi: 10.1006/jcph.1994.1159.
|
[17] | Cao S, Greenhalgh S. 1998. Attenuating boundary conditions for numerical modeling of acoustic wave propagation. Geophysics, 63(1): 231-243, doi: 10.1190/1.1444317.
|
[18] | Cerjan C, Kosloff D, Kosloff R, et al. 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50(4): 705-708. doi: 10.1190/1.1441945.
|
[19] | Du Q Z, Sun R Y, Zhang Q. 2011. Numerical simulation of three-component elastic wavefield in 2D TTI media in the condition of the combined boundary. Oil Geophys. Prosp. (in Chinese), 46(2): 187-195.
|
[20] | Engquist B, Majda A. 1977. Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. USA, 74(5): 1765-1766.
|
[21] | Gao H, Zhang J. 2008. Implementation of perfectly matched layers in an arbitrary geometrical boundary for elastic wave modelling. Geophys. J. Int., 174(3): 1029-1036, doi: 10.1111/j.1365-246X.2008.03883.x.
|
[22] | Heidari A H, Guddati M N. 2006. Highly accurate absorbing boundary conditions for wide-angle wave equations. Geophysics, 71(3): S85-S97, doi: 10.1190/1.2192914.
|
[23] | Hestholm S. 2003. Elastic wave modeling with free surfaces: Stability of long simulations. Geophysics, 68(1): 314-321, doi: 10.1190/1.1543217.
|
[24] | Hestholm S O, Ruud B. 2000. 2D finite-difference viscoelastic wave modelling including surface topography. Geophys. Prospect., 48(2): 341-373, doi: 10.1046/j.1365-2478.2000.00185.x.
|
[25] | Higdon R L. 1991. Absorbing boundary conditions for elastic waves. Geophysics, 56(2): 231-241, doi: 10.1190/1.1443035.
|
[26] | Liu Y, Sen M K. 2012. A hybrid absorbing boundary condition for elastic staggered-grid modelling. Geophys. Prospect., 60(6): 1114-1132, doi: 10.1111/j.1365-2478.2011.01051.x.
|
[27] | Luo Y, Schuster G. 1990. Parsimonious staggered grid finite-difference of the wave equation. Geophys. Res. Lett., 17(2): 155-158, doi: 10.1029/GL017i002p00155.
|
[28] | Martin R, Komatitsch D. 2009. An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophys. J. Int., 179(1): 333-344, doi: 10.1111/j.1365-246X.2009.04278.x.
|
[29] | Martin R, Komatitsch D, Gedney S D. 2008. A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation. Comput. Model. Eng. Sci., 37(3): 274-304, doi: 10.3970/cmes.2008.037.274.
|
[30] | Tian X, Kang I B, Kim G Y, et al. 2008. An improvement in the absorbing boundary technique for numerical simulation of elastic wave propagation. J. Geophys. Eng., 5(2): 203-209, doi:10.1088/1742-2132/5/2/007.
|
[31] | Virieux J. 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51(4): 889-901, doi: 10.1190/1.1442147.
|
[32] | Wang T, Tang X. 2003. Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach. Geophysics, 68(5): 1749-1755, doi: 10.1190/1.1620648.
|
[33] | Wang X M, Zhang H L, Wang D. 2003. Modelling of seismic wave propagation in heterogeneous poroelastic media using a high-order staggered finite-difference method. Chinese J. Geophys. (in Chinese), 46(6): 842-849.
|
[34] | Yang D H. 2002. Finite element method of the elastic wave equation and wavefield simulation in two-phase anisotropic media. Chinese J. Geophys. (in Chinese), 45(4): 575-583.
|
[35] | Zeng Y, He J, Liu Q. 2001. The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics, 66(4): 1258-1266, doi: 10.1190/1.1487073.
|
[36] | Zhang L X, Fu L Y, Pei Z L. 2010. Finite difference modeling of Biot''s poroelastic equations with unsplit convolutional PML and rotated staggered grid. Chinese J. Geophys. (in Chinese), 53(10): 2470-2483, doi: 10.3969/j.issn.0001-5733.2010.10.021.
|
[37] | Zhou Z S, Liu X L, Xiong X Y. 2007. Finite-difference modelling of Rayleigh surface wave in elastic media. Chinese J. Geophys. (in Chinese), 50(2): 567-573.
|
[38] | Zhang J F, Liu T L. 1999. P-SV-wave propagation in heterogeneous media: grid method. Geophys. J. Int., 136(2): 431-438, doi: 10.1111/j.1365-246X.1999.tb07129.x.
|
[39] | Zhou H, McMechan G A. 2000. Rigorous absorbing boundary conditions for 3-D one-way wave extrapolation. Geophysics, 65(2): 638-645, doi: 10.1190/1.1444760.
|