全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电离层LBH日辉辐射大视场计算方法

DOI: 10.6038/cjg20140202, PP. 354-363

Keywords: 电离层,远紫外辐射,LBH带,柱辐射率

Full-Text   Cite this paper   Add to My Lib

Abstract:

LBH日辉辐射是由光电子与氮气分子碰撞激发而产生的,是电离层在远紫外辐射波段中最强的分子辐射信号.从空间对电离层LBH日辉辐射进行成像观测为高层大气状态的监测提供了一种强有力的方法.本文分析了LBH辐射的谱带特征,采用电子碰撞直接激发理论,使用球几何大气模型,针对大视场观测模式,给出了一种改进的LBH日辉柱辐射率计算方法RAURIC.RAURIC针对AURIC辐射算法的局限性主要有两点改进:一是增加了观测方位角;二是考虑了沿观测视线LOS方向上太阳天顶角的变化.我们使用RAURIC计算了140~180nm波段的LBH日辉辐射,并与AURIC进行了比较,结果表明:在天底方向上,二者具有非常好的一致性;在其他观测方向上,尤其在大视场观测模式下,则需要使用RAURIC进行计算.本文工作为电离层LBH日辉图像模拟技术与数据反演技术的研制奠定了基础.

References

[1]  Ajello J M, Shemansky D E. 1985. A reexamination of important N2 cross sections by electron impact with application to the dayglow: the Lyman-Birge-Hopfield band system and NI (119.99 nm). J. Geophys. Res., 99(A10): 9845-9861, doi: 10.1029/JA090iA10p09845.
[2]  Bush B C, Chakrabarti S. 1995. A radiative transfer model using spherical geometry and partial frequency redistribution. J. Geophys. Res., 100(A10): 19627-19642, doi: 10.1029/95JA01209.
[3]  Conway R R. 1992. Self-Absorption of the N2 Lyman-Birge-Hopfield bands in the far ultraviolet dayglow. J. Geophys. Res., 87(A2): 859-866, doi: 10.1029/JA087iA02p00859.
[4]  Dashkevich Z V, Sergienko T I, Ivanov V E. 1993. The Lyman-Birge-Hopfield bands in aurora. Planet. Space Sci., 41(1):81-87, doi: 10.1016/0032-0633(93)90019-X.
[5]  Evans J S, Strickland D J, Paxton L J. 1995. Satellite remote sensing of thermospheric O/N2 and solar EUV, 2. Data analysis. J. Geophys. Res., 100(A7): 12227-12233, doi: 10.1029/95JA00573.
[6]  Eastes R W. 2000. Emissions from the N2 Lyman-Birge-Hopfield bands in the Earth''s atmosphere. Phys. Chem. Earth, 25(5-6): 523-527, doi: 10.1016/S1464-1917(00)00069-6.
[7]  Gladstone G R. 1994. Simulations of DE 1 UV airglow images. J. Geophys. Res., 99(A6): 11441-11448, doi: 10.1029/93JA03525.
[8]  Huffman R E. 1992. Atmospheric Ultraviolet Remote Sensing. London: Academic Press.
[9]  Link R, Strickland D J, Daniell R E. 1992. AURIC airglow modules: phase 1 development and application. SPIE, Ultraviolet Technology IV, 1764: 132-1441, doi: 10.1117/12.140843.
[10]  Mcewen D J, Nicholls R W. 1966. Intensity distribution of the Lyman-Birge-Hopfield band system of N2. Nature, 209(5026): 902, doi: 10.1038/209902a0.
[11]  Meier R R. 1991. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev., 58(1): 1-185, doi: 10.1007/BF01206000.
[12]  Mende S B, Heetderks H, Frey H U, et al. 2000. Far ultraviolet imaging from the IMAGE spacecraft. 2. wideband FUV imaging. Space Sci. Rev., 91(1): 271-285, doi: 10.1023/A:1005227915363.
[13]  Ma S Y, Liu H X, Schlegel K. 2002. A comparative study of magnetic storm effects on the ionosphere in the polar cap and auroral Oval-F-Region negative storm. Chinese J. Geophys. (in Chinese), 45(2): 160-169.
[14]  Oran E S, Strickland D J. 1978. Photoelectron Flux in the Earth''s Ionospheric. Planet. Space Sci., 26(1): 81-87, doi: 10.1016/0032-0633(78)90056-9.
[15]  Paxton L J, Meng C I, Fountain G H, et al. 1992. Special Sensor Ultraviolet Spectrographic Imager (SSUSI): An instrument description. SPIE, 1745: 2-15, doi: 10.1117/12.60595.
[16]  Paxton L J, Christensen A B, Humm D C, et al. 1999. Global ultraviolet imager (GUVI): measuring composition and energy inputs for the NASA Thermosphere Ionosphere Energetics and Dynamics (TIMED) mission. SPIE, 3756: 265-276, doi: 10.1117/12.366380.
[17]  Snyder J P. 1987. Map Projections—a Working Manual. Reston: U.S. Geological Survey.
[18]  Strickland D J, Evans J S, Bishop J, et al. 1992. Atmospheric ultraviolet radiance integrated code (AURIC): Current capabilities for rapidly modeling dayglow from the far UV to the near IR. SPIE, 2831: 184-199, doi: 10.1117/12.257195.
[19]  Strickland D J, Cox R J, Barnes R P, et al. 1994. Model for generating global images of emission from the thermosphere. Appl. Opt., 33(16): 3578-3594, doi: 10.1364/AO.33.003578.
[20]  Strickland D J, Evans J S, Paxton L J. 1995. Satellite remote sensing of thermospheric O/N2 and solar EUV, 1. Theory. J. Geophys. Res., 100(A7): 12217-12226, doi: 10.1029/95JA00574.
[21]  Strickland D J, Bishop J, Evans J S, et al. 1999. Atmospheric ultraviolet radiance integrated code (AURIC): Theory, software architecture, inputs, and selected results. J. Quant. Spectrosc. Radiat. Transfer, 62(6): 689-742, doi: 10.1016/S0022-4073(98)00098-3.
[22]  Xu W Y. 2009. Variations of the auroral electrojet belt during substorms. Chinese J. Geophys. (in Chinese), 52(3): 607-615.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133