Ajello J M, Shemansky D E. 1985. A reexamination of important N2 cross sections by electron impact with application to the dayglow: the Lyman-Birge-Hopfield band system and NI (119.99 nm). J. Geophys. Res., 99(A10): 9845-9861, doi: 10.1029/JA090iA10p09845.
[2]
Bush B C, Chakrabarti S. 1995. A radiative transfer model using spherical geometry and partial frequency redistribution. J. Geophys. Res., 100(A10): 19627-19642, doi: 10.1029/95JA01209.
[3]
Conway R R. 1992. Self-Absorption of the N2 Lyman-Birge-Hopfield bands in the far ultraviolet dayglow. J. Geophys. Res., 87(A2): 859-866, doi: 10.1029/JA087iA02p00859.
[4]
Dashkevich Z V, Sergienko T I, Ivanov V E. 1993. The Lyman-Birge-Hopfield bands in aurora. Planet. Space Sci., 41(1):81-87, doi: 10.1016/0032-0633(93)90019-X.
[5]
Evans J S, Strickland D J, Paxton L J. 1995. Satellite remote sensing of thermospheric O/N2 and solar EUV, 2. Data analysis. J. Geophys. Res., 100(A7): 12227-12233, doi: 10.1029/95JA00573.
[6]
Eastes R W. 2000. Emissions from the N2 Lyman-Birge-Hopfield bands in the Earth''s atmosphere. Phys. Chem. Earth, 25(5-6): 523-527, doi: 10.1016/S1464-1917(00)00069-6.
[7]
Gladstone G R. 1994. Simulations of DE 1 UV airglow images. J. Geophys. Res., 99(A6): 11441-11448, doi: 10.1029/93JA03525.
[8]
Huffman R E. 1992. Atmospheric Ultraviolet Remote Sensing. London: Academic Press.
[9]
Link R, Strickland D J, Daniell R E. 1992. AURIC airglow modules: phase 1 development and application. SPIE, Ultraviolet Technology IV, 1764: 132-1441, doi: 10.1117/12.140843.
[10]
Mcewen D J, Nicholls R W. 1966. Intensity distribution of the Lyman-Birge-Hopfield band system of N2. Nature, 209(5026): 902, doi: 10.1038/209902a0.
[11]
Meier R R. 1991. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev., 58(1): 1-185, doi: 10.1007/BF01206000.
[12]
Mende S B, Heetderks H, Frey H U, et al. 2000. Far ultraviolet imaging from the IMAGE spacecraft. 2. wideband FUV imaging. Space Sci. Rev., 91(1): 271-285, doi: 10.1023/A:1005227915363.
[13]
Ma S Y, Liu H X, Schlegel K. 2002. A comparative study of magnetic storm effects on the ionosphere in the polar cap and auroral Oval-F-Region negative storm. Chinese J. Geophys. (in Chinese), 45(2): 160-169.
[14]
Oran E S, Strickland D J. 1978. Photoelectron Flux in the Earth''s Ionospheric. Planet. Space Sci., 26(1): 81-87, doi: 10.1016/0032-0633(78)90056-9.
[15]
Paxton L J, Meng C I, Fountain G H, et al. 1992. Special Sensor Ultraviolet Spectrographic Imager (SSUSI): An instrument description. SPIE, 1745: 2-15, doi: 10.1117/12.60595.
[16]
Paxton L J, Christensen A B, Humm D C, et al. 1999. Global ultraviolet imager (GUVI): measuring composition and energy inputs for the NASA Thermosphere Ionosphere Energetics and Dynamics (TIMED) mission. SPIE, 3756: 265-276, doi: 10.1117/12.366380.
[17]
Snyder J P. 1987. Map Projections—a Working Manual. Reston: U.S. Geological Survey.
[18]
Strickland D J, Evans J S, Bishop J, et al. 1992. Atmospheric ultraviolet radiance integrated code (AURIC): Current capabilities for rapidly modeling dayglow from the far UV to the near IR. SPIE, 2831: 184-199, doi: 10.1117/12.257195.
[19]
Strickland D J, Cox R J, Barnes R P, et al. 1994. Model for generating global images of emission from the thermosphere. Appl. Opt., 33(16): 3578-3594, doi: 10.1364/AO.33.003578.
[20]
Strickland D J, Evans J S, Paxton L J. 1995. Satellite remote sensing of thermospheric O/N2 and solar EUV, 1. Theory. J. Geophys. Res., 100(A7): 12217-12226, doi: 10.1029/95JA00574.
[21]
Strickland D J, Bishop J, Evans J S, et al. 1999. Atmospheric ultraviolet radiance integrated code (AURIC): Theory, software architecture, inputs, and selected results. J. Quant. Spectrosc. Radiat. Transfer, 62(6): 689-742, doi: 10.1016/S0022-4073(98)00098-3.
[22]
Xu W Y. 2009. Variations of the auroral electrojet belt during substorms. Chinese J. Geophys. (in Chinese), 52(3): 607-615.