全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

变密度声波方程多参数全波形反演策略

DOI: 10.6038/cjg20140226, PP. 628-643

Keywords: 全波形反演,非线性,多参数,速度,密度

Full-Text   Cite this paper   Add to My Lib

Abstract:

多参数全波形反演中各参数之间的相互耦合增加了反演的非线性程度.通过分析各参数之间的相互影响,提出合理的多参数反演策略是解决该问题的有效途径.本文从变密度声波方程出发,首先研究了密度在速度反演中的重要作用,然后分析了速度对密度反演的影响程度,进而提出了一种有利于速度、密度分步联合反演的策略.第一步,利用给定的初始模型对速度、密度进行同时反演,得到比较可靠的速度反演结果;第二步,利用第一步反演得到的速度和给定的初始密度作为初始模型,继续进行双参数同时反演,这样可以同时得到比较可靠的速度、密度反演结果.为了进一步提高反演精度,将第二步反演得到的速度、密度作为初始模型,再进行下一轮双参数联合反演.二维理论模型实验结果充分说明了本文提出的这种反演策略的有效性.

References

[1]  Choi Y, Min D J, Shin C. 2008. Two-dimensional waveform inversion of multi-component data in acoustic-elastic coupled media. Geophysical Prospecting, 56(6): 863-881.
[2]  Dong L G, Chi B X, Tao J X, et al. 2013. Objective function behavior in acoustic full-waveform inversion. Chinese J. Geophys. (in Chinese), 56(10): 3445-3460.
[3]  Forgues E, Lambaré G. 1997. Parameterization study for acoustic and elastic ray+Born inversion. Journal of Seismic Exploration, 6: 253-277.
[4]  Jannane M, Beydount W, Crase E, et al. 1989. Wavelengths of Earth structures that can be resolved from seismic reflection data. Geophysics, 54(7): 906-910.
[5]  Jeong W, Lee H Y, Min D J. 2012. Full waveform inversion strategy for density in the frequency domain. Geophys. J. Int., 188(3): 1221-1242.
[6]  Kohn D, De Nil D, Kurzmann A, et al. 2012. On the influence of model parametrization in elastic full waveform tomography. Geophys. J. Int., 191(1): 325-345.
[7]  Krebs J, Anderson J, Hinkley D, et al. 2009. Fast full-wavefield seismic inversion using encoded sources. Geophysics, 74(6): WCC177-WCC188.
[8]  Li G P, Yao F C, Shi Y M, et al. 2011. Pre-stack wave equation inversion and its application in frequency domain. OGP, 46(3): 411-416.
[9]  Liu G F, Liu H, Meng X H, et al. 2012. Frequency-related factors analysis in frequency domain waveform inversion. Chinese J. Geophys. (in Chinese), 55(4): 1345-1353.
[10]  Mart in G S, Wiley R, Marfurt K J. 2006. Marmousi2—an elastic upgrade for Marmousi. The Leading Edge, 25(2): 156-166.
[11]  Mora P R. 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data. Geophysics, 52(9): 1211-1228.
[12]  Mulder W A, Plessix R E. 2004. A comparison between one-way and two-way wave-equation migration. Geophysics, 69(6): 1491-1504.
[13]  Nocedal J, Wright S J. 2006. Numerical optimization. Springer Science+Business Media, LLC.Pratt R G, Worthington M H. 1990. Inverse theory applied to multisource cross-hole tomography, Part 1: Acoustic wave-equation method. Geophysical Prospecting, 38(3): 287-310.
[14]  Prieux V, Brossier R, Operto S, et al. 2013. Multiparameter full waveform inversion of multicomponent ocean-bottom-cable data from the Valhall field. Part 1: imaging compressional wave speed, density and attenuation. Geophys. J. Int., 194(3): 1640-1664.
[15]  Shan R, Bian A F, Yu W H, et al. 2011. Pre-stack full waveform inversion for reservoir prediction. Oil Geophysical Prospecting, 46(4): 629-633.
[16]  Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49(8): 1259-1266.
[17]  Tarantola A. 1986. A strategy for nonlinear inversion of seismic reflection data. Geophysics, 51(10): 1893-1903.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133