全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

流变边界层及其对华北克拉通热/地震岩石圈底界差异的意义

DOI: 10.6038/cjg20140106, PP. 53-61

Keywords: 流变边界层,热岩石圈,地震岩石圈,软流圈黏性系数,华北克拉通

Full-Text   Cite this paper   Add to My Lib

Abstract:

二维热传导/对流数值模型显示,纯传导的固体岩石圈与纯对流的流体软流圈之间存在一过渡层,即流变边界层,其间传导与对流共同作用来传递热量.流变边界层厚度主要由软流圈黏性系数(η)控制,而受固体岩石圈厚度及热状态影响很小.随着η从1×1021Pa·s降低至1×1019Pa·s,流变边界层也随之减薄,流变边界层的厚度与lg(η)成正比.流变边界层的存在是造成热岩石圈与地震岩石圈厚度差异的重要因素.全球典型克拉通岩石圈的对比结果表明,地震岩石圈厚度普遍大于热岩石圈厚度,二者的差异多数在70~90km,很好地验证了流变边界层的存在.研究发现二者的差异在华北克拉通自西向东逐渐减小:由西部鄂尔多斯的约80km减少至渤海湾盆地的约20km.反映出华北克拉通岩石圈下部流变边界层厚度自西向东减薄,意味着软流圈黏性系数自西向东逐渐降低.这可能与中生代太平洋俯冲脱水形成的低黏大地幔楔有关,从一侧面印证了太平洋俯冲对华北克拉通破坏的影响.

References

[1]  Pollack H N, Chapman D S. 1977. On the regional variation of heat flow, geotherms, and the thickness of the lithosphere. Tectonophysics, 38(3-4): 279-296.
[2]  Shi X B, Zhou D, Zhang Y X. 2000. Thermo-rheological structure of lithosphere in the northern margin of South China Sea. Chinese Science Bulletin, 45(15): 1660-1665.
[3]  Sleep N H. 2003. Survival of Archean cratonal lithosphere. J. Geophys. Res., 108(B6): doi: 10. 1029/2001JB000169.
[4]  Sleep N H. 2006. Mantle plumes from top to bottom. Earth Sci. Rev., 77(4): 231-271.
[5]  Turcotte D L, Schubert G. 2002. Geodynamics, Applications of Continuum Physics to Geological Problems. (2nd ed). Cambridge: Cambridge Univ. Press, 456.
[6]  Wang K, Hu Y, He J. 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484(7394): 327-332.
[7]  Wang K. 2007. Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. //Dixon T H, Moore JC, eds. TheSeismogenic Zone of Subduction Thrust Faults. New York: Columbia University Press, 540-574.
[8]  Wang Y, Cheng S H. 2011. Thermal state and rheological strength of the lithosphere beneath the eastern China. Geotectonica et Metallogenia, 35(1): 12-23.
[9]  Wang Y, Wang J Y, Xiong L P, et al. 2001. Lithospheric geothermics of major geotectonic units in China mainland. Acta Geoscientia Sinica, 22(1): 17-22.
[10]  Zang S X, Liu Y G, Ning J Y. 2002. Thermal structure of the lithosphere in north China. Chinese J. Geophys., 45(1): 56-66.
[11]  Zhao D P, Tian Y, Lei J S, et al. 2009. Seismic image and origin of the Changbaiintraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Earth Planet. Sci. Lett., 173(3-4): 197-206.
[12]  Zhao D P, Maruyama S, Omori S. 2007. Mantle dynamics of the Western Pacafic and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res., 11(1-2): 120-131.
[13]  Zhao D P, Xu Y, Wiens D, et al. 1997. Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science, 278(5336): 254-257.
[14]  Zhu J S, Cai X L, Cao J M, et al. 2006. Lithospheric structure and geodynamics in China and its adjacent areas. Geology in China, 33(4): 793-803.
[15]  Zhu R X, Chen L, Wu F Y, et al. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54(6): 789-797, doi: 10.1007/s11430-011-4203-4.
[16]  Zhu R X, Yang J H, Wu F Y. 2012. Timing of destruction of the North China craton. Lithos, 149: 51-60.
[17]  Griffin W L, Ryan C G, Kaminsky E V, et al. 1999. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics, 310(1-4): 1-35.
[18]  Han S C, Sauber J, Luthcke S B, et al. 2008. Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J. Geophys. Res., 113(B11): B11413.
[19]  He L J, Hu S B, Wang J Y. 2001. Thermal structure of lithosphere in eastern China. Progress in Natural Science, 11(9): 966-969.
[20]  Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144(1-2): 93-108.
[21]  Hirth G, Kohlstedt D L. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists //Eiler J, ed. Inside the subduction Factory. American Geophysical Union, 83-105.
[22]  Inoue T. 1994. Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15GPa. Phys. Earth Planet. Inter., 85(3-4): 237-263.
[23]  James T S, Clague J J, Wang K, et al. 2000. Postglacial rebound at the northern Cascadia subduction zone. Quat. Sci. Rev., 19(14-15): 1527-1541.
[24]  Jaupart C, Mareschal J C. 1999. The thermal structure and thickness of continental roots. Lithos, 48(1-4): 93-114.
[25]  Jiao Y X, Qiu N S, Li W Z, et al. 2013. The Mesozoic-Cenozoic evolution of lithospheric thickness in the Ordos Basin: constrained by geothermal evidence. Chinese J. Geophys. (in Chinese), 56(9): 3051-3060.
[26]  Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1): 108-124.
[27]  Komabayashi T, Omori S, Maruyama S. 2004. Petrogenetic grid in the system MgO-SiO2-H2O up to 30 GPa, 1600℃: applications to hydrous peridotitesubducting into the Earth''s deep interior. J. Geophys. Res., 109: B03206, doi: 10.1029/2003JB002651.
[28]  Komiya T, Maruyama S. 2007. A very hydrous mantle under the western Pacific region: Implications for formation of marginal basins and style of Archean plate tectonics. Gondwana Research, 11(1-2): 132-147.
[29]  Lachenbruch A H. 1978. Heat flow in Basin and Range province and thermal effects of tectonic extension. Pageoph., 117(1-2): 34-50.
[30]  Lee C T A, Lenardic A, Cooper C M, et al. 2005. The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers. Earth Planet. Sci. Lett., 230(3-4): 379-395.
[31]  Petitjean S, Rabinowicz M, Grégoire M, et al. 2006. Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity. Geochem. Geophys. Geosyst., 7: Q03021, doi: 10.1029/2005GC001053.
[32]  Anderson D L. 1995. Lithosphere, asthenosphere, and perisphere. Rev. Geophys., 33(1): 125-149.
[33]  Artemieva I M, Mooney W D. 2001. Thermal thickness and evolution of Precambrian lithosphere: a global study. J. Geophys. Res., 106(B8): 16387-16414.
[34]  Artemieva I M. 2009. The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos, 109(1-2): 23-46.
[35]  Billen M I, Gurnis M. 2001. A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett., 193(1-2): 227-236.
[36]  Chapman D S, Furlong K P. 1992. Thermal state of the continental lower crust. // Fountain D M, Arculus R, Kay R W, eds. in Continental Lower Crust. Amsterdam-London-New York: Elsevier, 179-199.
[37]  Chen H S, Zhang Y H. 1999. Tectonic Characteristics of Lithospheric Structure and Evaluation of Oil and Gas Resources in the Lower Yangtze and Its Adjacent Areas. Beijing: Geological Press.
[38]  Chen L, Cheng C, Wei Z. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet. Sci. Lett., 286(1-2): 171-183.
[39]  Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120(1-2): 96-115.
[40]  Conder J A, Wiens D A. 2006. Seismic structure beneath the Tonga arc and Lau back-arc basin determined fromjoint Vp, Vp/Vs tomography. Geochem. Geophys. Geosyst., 7(3): Q03018.
[41]  Cooper C M, Lenardic A, Moresi L. 2004. The thermal structure of stable continental lithosphere within a dynamic mantle. Earth Planet. Sci. Lett., 222(3-4): 807-817.
[42]  Currie C A, Hyndman R D. 2006. The thermal structure of subduction zone back arcs. J. Geophys. Res., 111: B08404, doi: 10.1029/2005JB004024.
[43]  Dixona J E, Dixona T H, Bellb D R, et al. 2004. Lateral variation in upper mantle viscosity: role of water. Earth Planet. Sci. Lett., 222(2): 451-467.
[44]  Doin M P, Fleitout L, Christensen U. 1997. Mantle convection and the stability of depleted and undepleted continental lithosphere. J. Geophys. Res., 102(B2): 2771-2787.
[45]  Lei J, Zhao D. 2005. P-wave tomography and origin of the Changbaiintraplate volcano in Northeast Asia. Tectonophysics, 397(3-4): 281-295.
[46]  Lewis T J, Hyndman R D, Fluck P. 2003. Heat flow, heat generation, and crustal temperatures in the northern Canadian Cordillera: Thermal control of tectonics. J. Geophys. Res., 108(B6): 2316, doi: 10. 1029/2002JB002090.
[47]  Li C, Wang L S, Shi Y S. 1996. Depp thermal state and lithospheric thickness in the lower Yangtze area. Journal of Nanjing University (Natural Sciences), 32(3): 494-499.
[48]  Liu S W, Wang L S, Gong Y L, et al. 2005. Thermo-rheological structure of lithosphere in the Jiyang depression and its geodynamical implications. Science in China (D), 35(3): 203-214.
[49]  Liu S W, Wang L S, Jia C Z, et al. 2008. Thermo-rheological structure of continental lithosphere beneath major basins in central-western China: implications for foreland basin formation. Earth Science Frontiers, 15(3): 113-122.
[50]  Mc Kenzie D P, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29(3): 625-679.
[51]  Milne G A, Davis J L, Mitrovica J X, et al. 2001. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science, 291(5512): 2381-2385.
[52]  Mitrovica J X, Forte A M. 2004. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett., 225(1-2): 177-189.
[53]  Mitrovica J X. 1996. Haskell
[54]  revisited. J. Geophys. Res., 101(B1): 555-569.
[55]  Morgan P. 1984. The thermal structure and thermal evolution of the continental lithosphere. Physics and Chemistry of the Earth, 15: 107-193.
[56]  Ohtani E, Litasov K, Hosoya T, et al. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter., 143: 255-269.
[57]  Panet I, Pollitz F, Mikhailov V, et al. 2010. Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra-Andaman earthquake. Geochem. Geophys. Geosyst., 11: Q06008. doi: 10.1029/2009GC002905.
[58]  Paulson A, Zhong S J, Wahr J. 2007. Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int., 171(2): 497-508.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133